OUTPUT_STABILITY_REQUIREMENTS

* dsauersanjose@aol.com 12/17/08
* www.idea2ic.com

To Covert PDF to plain text click below
http://www.fileformat.info/convert/doc/pdf2txt.htm

The Actual output transistors in the LM6142 needs to conduct somewhere between one third to one half of the total supply current. This type of RRIO Op Amp is most unstable without a load since the ftau of the output transistors are being set by the stray emitter base capacitance and the emitter base current. This in itself created a problem in that it constrains the output transistors to be as small as possible. The die photo below shows the four output transistors for the two amplifiers at the bottom next to some pads and capacitors.

Usually output transistors are much more apparent, but in this case it is a very current starved design. Making the output transistors small also had some tradeoff in terms of beta rolling off the maximum output current available.

The same method to reducing signal path was needed to meet the supply current stability requirements. The simulation below shows that the output stage is just getting ready to oscillate when CBYP is only . 2pF.

When CBYP is increased to 2 pF , the high frequency signal path is essentially just CBYP and QN3 and QN4. Even though QN4 is drawing only 200uA and has a stray emitter base capacitance of about 2.5 pF , the simulation below suggest stability.

It appears to be possible to reduce phase delay at higher frequencies even more by additionally changing the value of RBYP from 1 Ohm to 1KOhm.

This feature was effective used to meet the unity gain stability requirement with 200 pF loads.

