
*=======TRANSIENT_OSCILLATOR_PHASE_NOISE_JITTER=============

Adding a piece wise linear noise source to a free running oscillator
can show how the noise maps to jitter or PM or to a spectrum.

In this case a 2second/1kHz BW random PWL file is created.

But in this case, a jitter plot will be taken and used to produce
a PWL file, which then can be used to Phase Modulate a 20 Hz
signal.

OSCILLATOR_WITH_PWL_Noise_Jitter
* R1
* _____/\ /\ /__
* | \/ \/ _|_
* VFB| ///
* |___/\ /\ /_____________
* | \/ \/ _|_ |
* _|_ R2 ___ C0 | ___
* /_ \ BPWL | |__|OUT|
* // \ \ _|_200uF| |___|
* \ \// /// |
* ___/ INP |\ |
* |__________|+\ |
* | _/\ /\ /_|
* C1 INN | / \/ \/ |
* ________|-/ R0 1 Ohm|
* _|_ | |/ BAMP |
* ___ | |
* | | R3 |
* _|_ |__/\ /\ /________|
* /// \/ \/
*
* VpwlT OUT 0 PWL(+ 0.0005 0.988835 +.....
*=========Include_Noise_File===
.include PWL_File.inc
Rload OUT 0 1k
BAMP OUT1 0 V = 9.9*tanh((V(INP)-V(INN))*10)
R0 OUT1 OUT2 1
C0 OUT2 0 500u
R1 VFB 0 1K
R2 VFB OUT2 1K
R3 INN OUT2 2.49K
BPWL INP VFB V = .1*V(OUT)
C1 INN 0 9.415u IC= .1
*=========Run_Simulation===
*TRAN TSTEP TSTOP TSTART TMAX ?UIC?
.tran 5u 2 0 5u UIC
.control
run
set pensize = 2
plot out2 inp inn
*===

Noise from BPWL is applied to one of the inputs of the amplifier BAMP.
Amplifier BAMP is clipping its output at +/- 10Volts.

Capacitor C1 is toggling between +/- 5volts. Noise source BPWL is
messing up the timing. So in this case C1 has been adjusted to produce
40 whole cycles within 2 seconds.

Noise source BPWL is receiving a random 1VRMS signal with a bandwidth of
1KHz. This has been scaled down to +/- 100mV rms.

The Noise source BPWL can be seen on the inp input. But its PM effects are
hard to see. A jitter plot can show better details.

*=========Create_AnySize_Arrays==
compose anysize start = 0 stop = 99 step =1
let num = length(out2)-5
let i = 0
let t = 0
let n = 0
*===

Assume the number of rising or falling edges are not known
at this point. So array anysize will be used to store
an unknown number of data points. The total number of output
points (num) for the oscillator output is easy to find.

Some simple "if" statements can be used to find the timing
for the edges.

*=========Find_Edge_Timing==
repeat $&num
if (out2[i] < 0 & out2[i+1] > 0)
let t = time[i]
let anysize[n]= t
echo n= $&n out_rise= $&t
let n = n +1
endif
if (out2[i] > 0 & out2[i+1] < 0)
let t = time[i]
let anysize[n]= t
echo n= $&n out_fall= $&t
let n = n +1
endif
let i = i +1
endrepeat
let n3 = n -1
*===

The MacSpice printout..

n = 0 out_rise = 0.0159425
n = 1 out_fall = 0.0402975
n = 2 out_rise = 0.0642775
n = 3 out_fall = 0.0891075
n = 4 out_rise = 0.114012
n = 5 out_fall = 0.138993
n = 6 out_rise = 0.164068
...
n = 76 out_rise = 1.91342
n = 77 out_fall = 1.9383
n = 78 out_rise = 1.96327
n = 79 out_fall = 1.98833

Now that the number of edge data points are known,
some new arrays can be created to store and plot

the results.

*=========Create_Edge_Time_Arrays==
compose tp start = 0 stop = $&n3 step =1
compose tpac start = 0 stop = $&n3 step =1
compose td start = 0 stop = $&n3 step =1
compose tdac start = 0 stop = $&n3 step =1
compose rtp start = 0 stop = $&n3 step =1
compose pmr start = 0 stop = $&n3 step =1
*=========Transfer_Arrays==
let i = 0
repeat $&n
let rtp[i] = anysize[i]
let i = i +1
endrepeat
let i = 0
let n2 = n -1
repeat $&n2
let tp[i] = rtp[i+1] -rtp[i]
let i = i +1
endrepeat
let tp[n2] = tp[n2-1]
plot tp vs rtp
*===

In this case rtp stands for time reference point.
That is the time when the transition happened.
The value tp stands for time period. This is
the actual time between edges. Notice that the
average time period is 25msec. A 20Hz square
wave has two transitions within 50msec.

It is easy to do some further math on the data.

*=========Remove_Average_Time_Period==
let tpave = mean(tp)
let tpac = tp -tpave
plot tpac vs rtp
*=========Find_RMS_Vtpac=========================
let i = 0
let vpwr = 0
repeat $&n2
let i = i +1
let vpwr = vpwr + (mag(tpac[i])*mag(tpac[i]))/n2
end
let vrms1 = sqrt(vpwr)
echo Edge2Edge_Period $&tpave TPAC RMS SQUARE = $&vrms1
*===

In this case tpac stands for time reference point AC.
The average time period has been stripped away.

Now it is easy to do a RMS of the data and print
out both the average and RMS levels.

The MacSpice printout...

Edge2Edge_Period 0.024968 TPAC RMS SQUARE = 0.000404478

Consider the ratio of the RMS value to the Average value.

 TimePeriod_RMS/AVE = 0.0162

OSCILLATOR_WITH_PWL_Noise
* R1
* _____/\ /\ /__
* | \/ \/ _|_
* VFB| ///
* |___/\ /\ /_____________
* | \/ \/ _|_ |
* _|_ R2 ___ C0 | ___
* /_ \ BPWL | |__|OUT|
* // \ \ _|_200uF| |___|
* \ \// /// |
* ___/ INP |\ |
* |__________|+\ |
* | _/\ /\ /_|
* C1 INN | / \/ \/ |
* ________|-/ R0 1 Ohm|
* _|_ | |/ BAMP |
* ___ | |
* | | R3 |
* _|_ |__/\ /\ /________|
* /// \/ \/

Capacitor C1 is swinging between -5V and +5V.
And at each end there is an uncertainty of +/- 100mV rms.
So in this case, the ratio of the RMS value to Average
value is.

 C1_TimePeriod_RMS/AVE = sqrt(2)*100mv/10V = 0.01414

The two ratios of uncertainty to average value should come
close to each other. The amplifier BAMP is in effect sampling
two 100mV rms random points to be compared to a 10volt swing.
That ratio of uncertainty to the average value gets directly
mapped to the time period uncertainty.

Now this 100mV rms noise has a 1kHz bandwidth. Even though
a grand total of 80 samples of this noise is taken over 2 seconds,
the RMS value for all samples is still 100mV. This is a case

of sampling without an anti-aliasing filter. So the 1kHz noise
just got all alaised down to within a 20Hz bandwidth.

But variation in time period is really frequency modulation.
All the ac time periods need to be added up to see the overall
phase timing.

*=========Convert_FM_to_PM==
let i = 1
let n2 = n -1
repeat $&n2
let td[i] = td[i-1] +tpac[i]
let i = i +1
endrepeat
plot td vs rtp
*=========Remove_Average_Phase==
let tdave = mean(td)
let tdac = td -tdave
plot tdac vs rtp

*===

In this case tdac stands for time delay AC.
This is how much each edge is "delayed" in time
compared to a perfect 20Hz square wave.

This can further be converted to a phase modulation
format in terms of radians.

*=========Convert_to_PM_radian==
let pmr =3.14159*tdac/tpave
plot pmr vs rtp
*===

Now pmr stands for phase modulation radians.
In this format, the jitter can be treated like
a modulation signal which can be exported to a
piece wise linear file.

*=========Write_To_PWL_File==
set outfile = "PWL_FileJitter.inc"
echo "VpwlT OUT 0 PWL(" > $outfile
let i = 1
let t = 0
let ph = 0
repeat $&n2
let t = rtp[i]
let ph = pmr[i]
echo "+ $&t $&ph" >> $outfile
let i = i +1
endrepeat
echo "+)" >> $outfile
*=========Wrap_Up===
.endc
.end
*===

The PWL_FileJitter.inc file comes out looking like so.

VpwlT OUT 0 PWL(
+ 0.0402975 -0.298113
+ 0.0642775 -0.315477
+ 0.0891075 -0.3235
+ 0.114012 -0.321894
.....
+ 1.88921 -0.107741
+ 1.91342 -0.119442
+ 1.9383 -0.118562
+ 1.96327 -0.107615
+ 1.98833 -0.0966681
+)

===========Full_Netlist_For_Copy_Paste=======================
OSCILLATOR_WITH_PWL_Noise_Jitter
* R1
* _____/\ /\ /__
* | \/ \/ _|_
* VFB| ///
* |___/\ /\ /_____________
* | \/ \/ _|_ |
* _|_ R2 ___ C0 | ___
* /_ \ BPWL | |__|OUT|
* // \ \ _|_200uF| |___|
* \ \// /// |
* ___/ INP |\ |
* |__________|+\ |
* | _/\ /\ /_|
* C1 INN | / \/ \/ |
* ________|-/ R0 1 Ohm|
* _|_ | |/ BAMP |
* ___ | |
* | | R3 |
* _|_ |__/\ /\ /________|
* /// \/ \/
*
* VpwlT OUT 0 PWL(+ 0.0005 0.988835 +.....
.include PWL_File.inc
Rload OUT 0 1k
BAMP OUT1 0 V = 9.9*tanh((V(INP)-V(INN))*10)
R0 OUT1 OUT2 1
C0 OUT2 0 500u
R1 VFB 0 1K
R2 VFB OUT2 1K
R3 INN OUT2 2.49K
BPWL INP VFB V = .1*V(OUT)
C1 INN 0 9.415u IC= .1
*TRAN TSTEP TSTOP TSTART TMAX ?UIC?
.tran 5u 2 0 5u UIC
.control
run
set pensize = 2

plot out2 inp inn

*=========Create_AnySize_Arrays==
compose anysize start = 0 stop = 99 step =1
let num = length(out2)-5
let i = 0
let t = 0
let n = 0
*=========Find_Edge_Timing==
repeat $&num
if (out2[i] < 0 & out2[i+1] > 0)
let t = time[i]
let anysize[n]= t
echo n= $&n out_rise= $&t
let n = n +1
endif
if (out2[i] > 0 & out2[i+1] < 0)
let t = time[i]
let anysize[n]= t
echo n= $&n out_fall= $&t
let n = n +1
endif
let i = i +1
endrepeat
let n3 = n -1

*=========Create_Edge_Time_Arrays==
compose tp start = 0 stop = $&n3 step =1
compose tpac start = 0 stop = $&n3 step =1
compose td start = 0 stop = $&n3 step =1
compose tdac start = 0 stop = $&n3 step =1
compose rtp start = 0 stop = $&n3 step =1
compose pmr start = 0 stop = $&n3 step =1
*=========Transfer_Arrays==
let i = 0
repeat $&n
let rtp[i] = anysize[i]
let i = i +1
endrepeat
let i = 0
let n2 = n -1
repeat $&n2
let tp[i] = rtp[i+1] -rtp[i]
let i = i +1
endrepeat
let tp[n2] = tp[n2-1]
plot tp vs rtp
*=========Remove_Average_Time_Period==
let tpave = mean(tp)
let tpac = tp -tpave
plot tpac vs rtp
*=========Find_RMS_Vtpac=========================
let i = 0
let vpwr = 0
repeat $&n2
let i = i +1
let vpwr = vpwr + (mag(tpac[i])*mag(tpac[i]))/n2
end
let vrms1 = sqrt(vpwr)
*echo TPAC RMS SQUARE = $&vrms1
echo Edge2Edge_Period $&tpave TPAC RMS SQUARE = $&vrms1
*=========Convert_FM_to_PM==
let i = 1
let n2 = n -1
repeat $&n2
let td[i] = td[i-1] +tpac[i]
let i = i +1
endrepeat
plot td vs rtp
*=========Remove_Average_Phase==
let tdave = mean(td)
let tdac = td -tdave
plot tdac vs rtp
*=========Convert_to_PM_radian==
let pmr =3.14159*tdac/tpave
plot pmr vs rtp
*=========Write_To_PWL_File==
set outfile = "PWL_FileJitter.inc"
echo "VpwlT OUT 0 PWL(" > $outfile
let i = 1
let t = 0
let ph = 0
repeat $&n2
let t = rtp[i]

let ph = pmr[i]
echo "+ $&t $&ph" >> $outfile
let i = i +1
endrepeat
echo "+)" >> $outfile
*=========Wrap_Up===
.endc
.end

2.18.10_12.15PM
dsauersanjose@aol.com
Don Sauer
http://www.idea2ic.com/

