Chaos_In_OTA_Filters

.OPTIONS RELTOL=. 001 ABSTOL=1p VNTOL=1p \quad ITL4=500 $===$

$*==================$	$======$	$==========$	
VT	Vtime	0	PWL
VF	VF	0	DC
VF	$\mathrm{VF2}$	0	1 k

VF2 VF2 $0 \quad$ PWL $\quad\left(\begin{array}{lllll}0 & 2 K & 1 & 0\end{array}\right)$

V IN	VIN	0	DC	0
$* \mathrm{BIN}$	BIN	0	$\mathrm{~V}=\mathrm{SIN}(0.1 .7 \mathrm{k} 1 \mathrm{p})$	
$1.2 * V(\mathrm{Vtime}) *(\sin (6.28319 * V(\mathrm{VF}) * \mathrm{~V}(\mathrm{Vtime}))+.3 * \sin (6.28319 * \mathrm{~V}(\mathrm{VF}) * \mathrm{~V}(\mathrm{Vtime}) * 2))$				

BIN BIN		0	$\mathrm{~V}=$	$0.2 * \mathrm{~V}($ Vtime $) *(\sin (6.28319 * v(V F) * V(V t i m e)))$

R0	BIN	SUMN	10 k	
R1	SUMN	HP	10 k	
R2	SUMN	BP	100 k	
R3	SUMN	LP	10 k	
XOPA1	SUMN	0	HP	OPA
XOTAS1	HP	BP		OTA_S
XOTAS2	BP	LP		OTA_S

*==OTAs_Can_Perform_The_Exact_Same_Function====
. control
$\begin{array}{lll}\text { tran } & .1 \mathrm{~m} \\ \text { plot } & .01 & 0 \\ \text { bp } & \text { title } & \\ \text { StateVariable_Q_10 }\end{array}$
plot bp vs bin
plot lp vs bin
plot hp vs bin
.endc

. end

The methods used to observe chaos may provide a better way to view a filter as to whether is operating properly.

The waveform above is at the exact resonance frequency of a two pole LM3080 type filter. The input signal is ramped up from 0 to 20 mv .

$m \mathrm{~V} \quad-\mathrm{bp}$

Using the chaos technique of plotting Output versus input, the plot at the Bandpass output is a straight line similar to a resistor. As the input signal increases, the line essentially widens.

But the LowPass and HighPass outputs are phase shifted by 90degrees. As the input signal increases in magnitude, the shapes at all output increase in size but don't change in shape.

Since the LowPass and HighPass are at different phases, their rotations are opposite.

Now when the input signal is made larger, the output at the Bandpass is beginning to act a little different.

$\Theta \circlearrowleft \circlearrowleft$ Graph 74 - tran40: State_Variable_OTA_1KHz

$\mathrm{mv} \quad-\mathrm{bp}$

But the plotting of the Bandpass output versus the input makes it easy to see when the transfer function is no longer a straight
line. This looks like a good way to test whether or not a filter is behaving properly.

The wave forms at both the LowPass and HighPass output also change shape. What is happening is that the inputs to the OTA are distorting enough that the assumption of linearity are obviously no longer valid.

This perhaps answers a question of how low must the THD be in an OTA based filter? The answers is when does the filter begin to effectively operate in another mode?

When the input signal is increased further, now we are begining to generate chaos curves.

Some key elements to a Chaos circuit appear to be feedback and nonlinearity.

to be interpedated in more than one way.

Perhaps the multiple states can result from the output distorted signal having multiple ways to regenerate its own input signal.

