

What if PM is generated by four Quad modulating a carrier to produce the right magnitude and phase? Start off doing a polar to rectangular conversion of a unity magnitude vector which has its angle being modulated by a 0.25 radian sine wave. The Y direction represents the signal to be modulated by the cosine of the carrier. The X direction represents how the sinewave carrier will be modulated. The following Macspice simulation will do just that.

```
===============MMCSpice==============================
5radian_FM
```

V_SINO VSINO 0 SIN(0 . 2520 0)
BSINO PMO $0 \mathrm{v}=\sin (\mathrm{v}(\mathrm{VSINO}))$
BCOS0 AMO $0 \mathrm{v}=\cos (\mathrm{v}(\mathrm{VSINO}))$
V_SIN1 VSIN1 $0 \operatorname{SIN}\left(\begin{array}{llll}0 & 1 & 20 & 0\end{array}\right)$
BSIN1 PM1 $0 \quad v=\sin (v(V S I N 1))$
BCOS1 AM1 $0 \mathrm{v}=\operatorname{cos(v(VSIN1))}$
V SIN2 VSIN2 $0 \operatorname{SIN}\left(\begin{array}{llll}0 & 2 & 20 & 0\end{array}\right)$
BSIN2 PM2 $0 \mathrm{v}=\sin (\mathrm{v}(\mathrm{VSIN} 2))$
BCOS2 AM2 $0 \quad \mathrm{v}=\cos (\mathrm{V}(\operatorname{VSIN} 2))$
V_SIN5 VSIN5 0 SIN(0 5 20 0)
BSTIN5 PM5 $0 \mathrm{v}=\sin (\mathrm{v}(\mathrm{VSIN} 5))$
BCOS5 AM5 $0 \mathrm{v}=\cos (\mathrm{V}(\operatorname{VSIN} 5))$
.tran 10u . 1 0 10u
.control
set pensize = 2
run
plot $\mathrm{v}(\mathrm{pm} 0) \mathrm{v}(\mathrm{am} 0)$

```
plot v(pm1) v(am1)
plot v(pm2) v(am2)
plot v(pm5) v(am5)
print mean(am0) mean(pm0)
linearize
```



```
plot mag(v(am0)) loglog title AM5
.endc
.end
```


In the case of $+/-0.25$ radians phase modulation, the magnitude of the carrier in the cosine direction remains pretty much around one. In the sine direction the magnitude comes close to the magnitude of the phase modulation.

If the am0 and pmo waveforms get put through a FFT, the harmonics magnitudes can all be printed out.
mean(am0) $=9.844484 e-01$
mean $(\mathrm{pm0})=3.107690 \mathrm{e}-08$
MacSpice 2 -> print am0

```
\begin{tabular}{lll} 
Index & am0 & \\
Ind & & Numb Harmonic \\
\hline 3 & \(1.554379 \mathrm{e}-02\), & \(2.749499 \mathrm{e}-11\) \\
7 & \(2.028169 \mathrm{e}-05\), & \(4.785207 \mathrm{e}-13\)
\end{tabular}
MacSpice 2 -> print pm0
\begin{tabular}{llll} 
Index pm0 & & Numb Harmonic \\
\hline 1 & \(3.424668 \mathrm{e}-12\), & \(2.480519 \mathrm{e}-01\) & 2 \\
5 & \(-5.93273 \mathrm{e}-12\), & \(6.485047 \mathrm{e}-04\) & 6 \\
\hline
\end{tabular}
The values from the tables match the waveform above. They can now be four quadrant multiplied where the cosine of the carrier is doing mainly \(A M\) and the sine of the carrier is doing mainly PM. +/- 0.25 radian PM modulation \(=>\)
\begin{tabular}{llll}
\((.985 \quad+0.0155 \cos (2 w m t)\) & \(+.00002 \cos (4 w m t)) * \cos (w c t)\) & Mainly AM \\
& \(+0.248 \sin (1 w m t)\) & \(+.0006 \sin (3 w m t)) * \sin (w c t)\) & Mainly PM
\end{tabular}
The following sinewave relationships will translate the spectrum into just three sine waves.
\(\cos (A) * \cos (B)=\cos (A-B) / 2+\cos (A+B) / 2\)
\(\sin (A) * \sin (B)=\cos (A-B) / 2+\cos (A+B) / 2\)
\(\sin (A) * \cos (B)=\sin (A-B) / 2+\sin (A+B) / 2\)
\(+/-0.25\) radian \(P M\) modulation \(\quad=0.985 \cos (w C t)+0.124 \sin ((w c-w m) t)+0.124 \sin ((w c+w m) t)\)
```


Notice the three terms are close to what a bessel function predicts as sidebands.

Bessel functions

The carrier and sideband amplitudes are illustrated for different modulation indices of FM signals.

Modulation index	Carrier	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
0.00	1.00													
0.25	0.98	0.12												
0.5	0.94	0.24	0.03											
1.0	0.77	0.44	0.11	0.02										

The same can now be done for one radian of phase modulation.

In this case the FFT for the am1 and pm1 signals yield as follows.

Index	am1		Numb Harmonic
3	2.298072e-01,	$4.793574 \mathrm{e}-10$	42
7	4.953312e-03,	$1.295340 \mathrm{e}-10$	84
11	4.187726e-05,	3.186473e-12	126
Index	pm1		Numb Harmonic
1	-2.02133e-10,	8.801012e-01	. 44
5	-3.71903e-10,	$3.912684 \mathrm{e}-02$. 02
9	-2.80503e-11,	$4.995214 \mathrm{e}-04$	
13	-4.51003e-13,	$3.004728 \mathrm{e}-06$	

There is now much more amplitude modulation, and the phase modulation looks much more distorted.
+/- 1 radian PM modulation $=>$

The sidebands can be express as follows.
+/- 1 radian PM modulation $=>$
$0.765 \cos (w c t)+0.440 \sin ((w c+/-1 w m) t)+0.115 \cos ((w c+/-2 w m) t)+0.024 \sin ((w c+/-3 w m) t)$
The terms match what is predicted by bessel.

Modulation index	Carrier	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
0.00	1.00				
0.25	0.98	0.12			
0.5	0.94	0.24	0.03		
1.0	0.77	0.44	0.11	0.02	

The waveforms of am1 and pm1 show where the harmonics are coming from. The amplitude is being modulated by a second harmonic while the
phase is being symmetrically distorted.

QOO Graph 32 - tran19: 5radian_FM

This technique appears to work well beyond one radian of modulation. At $+/-5$ radians, both am5 and pm5 are getting pretty messy.

There are a lot more terms that now need to be added to the spectrum.
+/- 5 radian PM modulation =>
$(-.177+0.093 \cos (2 w m t)+.782 \cos (4 w m t)+.262 \cos (6 w m t)+.036 \cos (8 w m t)) * \cos (w \operatorname{ct})$
($-0.655 \sin (1 \mathrm{wmt})+.729 \sin (3 \mathrm{wmt})+.522 \sin (5 \mathrm{wmt})+.104 \sin (7 \mathrm{wmt})) * \sin (\mathrm{wct})$
The total spectrum can now be arranged to follow the terms predicted by bessel.
+/- 5 radian $P M$ modulation $=>$
$=>-.177 \cos (w c t)+0.327 \sin \left(\left(w c^{+} /-1 \mathrm{wm}\right) t\right)+0.045 \cos ((\mathrm{wc}+/-2 \mathrm{wm}) \mathrm{t})+0.364 \sin ((\mathrm{wc}+/-3 \mathrm{wm}) \mathrm{t})+0.391 \cos ((\mathrm{wc}+/-4 \mathrm{wm}) \mathrm{t})$
$+0.261 \sin ((w c+/-5 \mathrm{wm}) t)+0.131 \cos ((w c+/-6 \mathrm{wm}) t)+0.052 \sin ((w c+/-7 \mathrm{wm}) t)+0.018 \cos ((w c+/-8 \mathrm{wm}) t)$

| Modulation index | Carrier | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 1.00 | | | | | | | | |
| 0.25 | 0.98 | 0.12 | | | | | | | |
| 0.5 | 0.94 | 0.24 | 0.03 | | | | | | |
| 1.0 | 0.77 | 0.44 | 0.11 | 0.02 | | | | | |
| 1.5 | 0.51 | 0.56 | 0.23 | 0.06 | 0.01 | | | | |
| 2.0 | 0.22 | 0.58 | 0.35 | 0.13 | 0.03 | | | | |
| 2.41 | 0 | 0.52 | 0.43 | 0.20 | 0.06 | 0.02 | | | |
| 2.5 | -.05 | 0.50 | 0.45 | 0.22 | 0.07 | 0.02 | 0.01 | | |
| 3.0 | -.26 | 0.34 | 0.49 | 0.31 | 0.13 | 0.04 | 0.01 | | |
| 4.0 | -.40 | -.07 | 0.36 | 0.43 | 0.28 | 0.13 | 0.05 | 0.02 | |
| 5.0 | -.18 | -.33 | 0.05 | 0.36 | 0.39 | 0.26 | 0.13 | 0.05 | 0.02 |

What this suggests is that any nonlinear type of FM can be converted to a full spectrum complete with magnitude and phase. There is always a one to one relationship of Phase modulation to frequency modulation in that phase shift always needs a frequency shift to precede it. But there may not any limitations on type of waveshape or amplitude or type of modulation on the wave form when it comes to finding its spectrum.

