SPICE PROVIDES A POLE/ZERO EXTRACTION FEATURE. THIS FEATURE CAN BE CROSS CHECKED TO A ROOT LOCUS PLOT OF AN ANALOG SYSTEM IN NEGATIVE FEEDBACK. QOO Graph 1 - unknown2: Anonymous

Units o: IPlot

RootLocus

P1 = .1/(s+.1) s is in jw (2PI*F) format
$\mathrm{P} 2=3 /(\mathrm{s}+3)$
P3 $=10 /(\mathrm{s}+10)$
Transfer_V00->V2 = 3/((s+.1)*(s+.3)*(s+10)
Root Locus needs this format $K *(s+z 0)(s+z 1) . . /(s+p 0)(s+p 1)$

* K_4_rootlocus $=3 *$ Egain

VIN	VIN	0	1.00	AC	1
EGain	V00	0	VIN	V2	1
R0	V00	V0	1.0		
C0	V0	0	10.0		
EGN0	VEG0	0	V0	0	1
R1	VEG0	V1	1.0		
C1	V1	0	.33		
EGN1	VEG1	0	V1	0	1
R2	VEG1	V2	1.0		
C2	V2	0	0.1		

.control

```
pz
setplot
set NameList =
```

$\begin{array}{lllll}\text { vin } & 0 & \text { v2 vol pol }\end{array}$
new
(RPlot IPlot)

```
compose GVals values (-1) 0 .5 . 6 . 8 1 1.5 2.2
settype current
let NoOfG =
begin
unset interrupt
* ============Loop_K_Gain============
set thisName = $NameList[1]
let RPlot = 0*vector(40)
set thisName = $NameList[2]
let IPlot = 0*vector(40)
let k = 1
while ( k <= NoOfG )
let gainn = 10^GVals[k-1]
alter egain gain = $&gainn
let K 4RL =
print }\mp@subsup{}{}{-
pz vin 0 v2 0 vol pol
print
let pr =
    pz.pole(1)
    real(pz.pole(1))
let pi = imag(pz.pole(1))
let unknown.RPlot[unknown.k-1] = pr
let unknown.IPlot[unknown.k-1] = pi
echo "Preal = $&pr Pimag = $&pi
let offset = 10
print
let pr = real(pz.pole(2))
    pz.pole(2)
let pi = imag(pz.pole(2))
let unknown.RPlot[offset + unknown.k-1] = pr
let unknown.IPlot[offset + unknown.k-1] = pi
echo "Preal = $&pr Pimag = $&pi
let offset = 20
print pz.pole(3)
let pr = real(pz.pole(3))
let pi = imag(pz.pole(3))
let unknown.RPlot[offset + unknown.k-1] = pr
let
    unknown.IPlot[offset + unknown.k-1] = pi
echo "Preal = $&pr Pimag = $&pi
destroy
let k = k + 1
if ($?interrupt)
goto
    bail
endif
endwhile
\begin{tabular}{ll} 
settype & notype IPlot \\
settype & notype RPlot \\
setscale & GVals \\
set & pensize \(=1\) \\
plot & IPlot vs RPlot pointplot
\end{tabular}
label bail
echo "Done."
end
.endc
.end
```


Circuit: RootLocus*
$k _4 r l=3.000000 e-01$

```
pz.pole(1) = -1.00044e+01,0.0000000e+00
pz.pole(2) = -3.01542e+00,0.000000e+00
pz.pole(3) = -1.10494e-01,0.000000e+00
k 4rl = 3.000000e+00
pz}.pole(1) = -1.00435e+01,0.000000e+00
pz.pole(2) = -2.87711e+00,0.000000e+00
pz.pole(3) = -2.09738e-01,0.000000e+00
k_4rl = 9.486833e+00
pz.pole(1) = -1.01344e+01,0.000000e+00
pz.pole(2) = -2.49756e+00,0.000000e+00
pz.pole(3) = -4.98312e-01,0.000000e+00
k_4rl = 1.194322e+01
pz.pole(1) = -1.01679e+01,0.0000000e+00
pz.pole(2) = -2.32353e+00,0.000000e+00
pz.pole(3) = -6.38897e-01,0.000000e+00
k 4rl = 1.892872e+01
pz}.pole(1) = -1.02603e+01,0.000000e+00
pz.pole(2) = -1.43501e+00,3.155547e-01
pz.pole(3) = -1.43501e+00,-3.15555e-01
k 4rl = 3.000000e+01
pz.pole(1) = -1.03993e+01,0.000000e+00
pz.pole(2) = -1.36551e+00,1.157896e+00
pz.pole(3) = -1.36551e+00,-1.15790e+00
k_4rl = 9.486833e+01
pz.pole(1) = -1.10834e+01,0.000000e+00
pz.pole(2) = -1.02345e+00,2.805694e+00
pz.pole(3) = -1.02345e+00,-2.80569e+00
k_4rl = 4.754680e+02
pz.pole(1) = -1.34516e+01,0.000000e+00
pz.pole(2) = 1.606726e-01,5.991900e+00
pz.pole(3) = 1.606726e-01,-5.99190e+00
Done.
```

It is nice to see that the pole zero feature of spice can be sanity checked against a typical root locus plot for an Op Amp. The plot below is done in a point plot format which make it easier to pole value to a K value.

Q 0 Graph 1 - unknown2: Anonymous

Units o : IPlot

Two details need to be watched out for. First the poles do not come out in frequency format. Second, the transfer function of the $H(s)$ needs
to be in this format..
K_4_rootlocus*(s+z0)(s+z1)../(s+p0)(s+p1)
In the circuit below the low pass filters have constant terms that need to be taken account of.

* P1 = .1/(s+.1) s is in jw (2PI*F) format

P2 $=3 /(\mathrm{s}+3)$

* $\mathrm{P} 3=10 /(\mathrm{s}+10)$
* Transfer_V00->V2 $=3 /((s+.1) *(s+.3) *(s+10)$
* Root Locus needs this format $K *(s+z 0)(s+z 1) . . /(s+p 0)(s+p 1)$
* K_4_rootlocus $=3$ *Egain

The exact same root locus can be run off a mac or PC using a program from the following site.
http://uk.geocities.com/a.a.robinson@btinternet.com/
S-Plane Root Locus Plot

Execution time: 1.1 seconds

