```
AB_BIAS_DIFF_Thd_MX
* www.idea2ic.com
* dsauersanjose@aol.com 4/23/08
*
*
*
*
*
*
*
*
*
*
*
*
* *
*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline . OPTIONS & \multicolumn{2}{|l|}{GMIN \(=1 \mathrm{e}-18\)} & \multicolumn{2}{|l|}{METHOD=trap} & \multicolumn{2}{|l|}{srcsteps = 1} & \multicolumn{3}{|l|}{gminsteps \(=1\)} \\
\hline VCC & VC & 0 & & DC & 10 & & & & \\
\hline VAC1 & VIN & 0 & & DC & 0 & SIN( & 0 & 1 & 1000 \\
\hline IB1 & 0 & VBN1 & & 1u & & & & & \\
\hline IB2 & 0 & VBN2 & & 1 u & & & & & \\
\hline QN1 & VBN1 & VBN1 & VE4 & NPN1 & 4.70 & & & & \\
\hline QN2 & VBN1 & VBN1 & VE3 & NPN1 & 1.00 & & & & \\
\hline QN3 & VCN3 & VBN1 & VE3 & NPN1 & 15.00 & & & & \\
\hline QN4 & VCN4 & VBN2 & VE4 & NPN1 & 15.00 & & & & \\
\hline QN5 & VBN2 & VBN2 & VE4 & NPN1 & 1.00 & & & & \\
\hline QN6 & VBN2 & VBN2 & VE3 & NPN1 & 4.70 & & & & \\
\hline QP1 & 0 & VBP1 & VE3 & PNP1 & 1.00 & & & & \\
\hline QP2 & 0 & 0 & VE4 & PNP1 & 1.00 & & & & \\
\hline R3 & VCN3 & VC & 1K & & & & & & \\
\hline R4 & VCN4 & VC & 1K & & & & & & \\
\hline E_DIF & OUT & 0 & VCN3 & VCN4 & 1 & & & & \\
\hline ROUT & OUT & 0 & 1K & & & & & & \\
\hline E_GAININ & VBP1 & 0 & VIN & 0 & 1m & & & & \\
\hline
\end{tabular}
```


*

To Covert PDF to plain text click below
http://www.fileformat.info/convert/doc/pdf2txt.htm
This simulation only works on MacSpice for now. Data in spice apparently gets stored in vectors which are ready to be plotted.

The real goal to a OTA differential input is to actually be able to lower the overall offset and noise while at the same time improving the distortion performance.

A normal input stage actually has its noise defined by the number of electrons that flow through it. To be able to break this barrier, the input stage needs to be AB biased. That means that the differential input stage needs to be able to put out more differential output current than it is drawing DC wise.

A invention above is doing this with two area ratios. The NX ratio term defines a current gain which is possible to take place in output transistors QN3 and QN4. The MX term defines what DC current is present with no input signal.

This simulation tests various sizes of the M area ratio. The larger the value of M, the more the $A B$ Biased input stage is B biased. Less current will flow with no signal. This will lower the overall effects of both offset and noise. However the input distortion will also be higher because it will introduce a type of crossover distortion.

A smaller value of M is a more A biased input stage. The distortion at low signals is better. But the performance of noise, offset, and maximum input signal are all reduced.

For a M value around 4.5 , the 1% distort is about at the 150 mV level compared to the 18 mV level for a normal differential input stage. The distortion levels for the dual differential input stage are shown below.

There appears to be least a factor of two increase in the magnitude of input voltage signal. But really the dual differential input stage should be thought of as having 1\% distortion at 62\% of its maximum differential output current. The AB_Bias input is at about 75\% of the maximum available output current at the same level of distortion.

