
RFC 959 (RFC959)

Internet RFC/STD/FYI/BCP Archives

[| | | | |]RFC Index RFC Search Usenet FAQs Web FAQs Documents Cities

 |Alternate Formats: rfc959.txt rfc959.txt.pdf

Comment on RFC 959

RFC 959 - File Transfer Protocol

Network Working Group J. Postel

Request for Comments: 959 J. Reynolds

 ISI

Obsoletes RFC: 765 (IEN 149) October 1985

 FILE TRANSFER PROTOCOL (FTP)

Status of this Memo

 This memo is the official specification of the File Transfer

 Protocol (FTP). Distribution of this memo is unlimited.

 The following new optional commands are included in this edition of

 the specification:

 CDUP (Change to Parent Directory), SMNT (Structure Mount), STOU

 (Store Unique), RMD (Remove Directory), MKD (Make Directory), PWD

 (Print Directory), and SYST (System).

 Note that this specification is compatible with the previous edition.

1. INTRODUCTION

 The objectives of FTP are 1) to promote sharing of files (computer

 programs and/or data), 2) to encourage indirect or implicit (via

 programs) use of remote computers, 3) to shield a user from

 variations in file storage systems among hosts, and 4) to transfer

 data reliably and efficiently. FTP, though usable directly by a user

 at a terminal, is designed mainly for use by programs.

 The attempt in this specification is to satisfy the diverse needs of

 users of maxi-hosts, mini-hosts, personal workstations, and TACs,

 with a simple, and easily implemented protocol design.

 This paper assumes knowledge of the Transmission Control Protocol

 (TCP) [2] and the Telnet Protocol [3]. These documents are contained

 in the ARPA-Internet protocol handbook [1].

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 1 of 49http://www.faqs.org/rfcs/rfc959.html

2. OVERVIEW

 In this section, the history, the terminology, and the FTP model are

 discussed. The terms defined in this section are only those that

 have special significance in FTP. Some of the terminology is very

 specific to the FTP model; some readers may wish to turn to the

 section on the FTP model while reviewing the terminology.

 October 1985

File Transfer Protocol

 2.1. HISTORY

 FTP has had a long evolution over the years. Appendix III is a

 chronological compilation of Request for Comments documents

 relating to FTP. These include the first proposed file transfer

 mechanisms in 1971 that were developed for implementation on hosts

 at M.I.T. (), plus comments and discussion in .

 provided a user-level oriented protocol for file transfer

 between host computers (including terminal IMPs). A revision of

 this as , restated FTP for additional review, while

 suggested further changes. The use of a "Set Data Type"

 transaction was proposed in in January 1982.

 obsoleted RFCs 264 and 265. The File Transfer Protocol

 was now defined as a protocol for file transfer between HOSTs on

 the ARPANET, with the primary function of FTP defined as

 transfering files efficiently and reliably among hosts and

 allowing the convenient use of remote file storage capabilities.

 further commented on errors, emphasis points, and

 additions to the protocol, while provided a status report

 on the working server and user FTPs. , issued in 1973,

 (among other RFCs too numerous to mention) presented further

 comments on FTP. Finally, an "official" FTP document was

 published as .

 By July 1973, considerable changes from the last versions of FTP

 were made, but the general structure remained the same.

 was published as a new "official" specification to reflect these

 changes. However, many implementations based on the older

 specification were not updated.

 In 1974, RFCs 607 and 614 continued comments on FTP.

 proposed further design changes and minor modifications. In 1975,

 entitled, "Leaving Well Enough Alone", discussed the

 differences between all of the early and later versions of FTP.

 presented a minor revision of , regarding the

 subject of print files.

 Motivated by the transition from the NCP to the TCP as the

 underlying protocol, a phoenix was born out of all of the above

 efforts in as the specification of FTP for use on TCP.

 This current edition of the FTP specification is intended to

 correct some minor documentation errors, to improve the

 explanation of some protocol features, and to add some new

 optional commands.

 October 1985

File Transfer Protocol

 In particular, the following new optional commands are included in

 this edition of the specification:

 CDUP - Change to Parent Directory

RFC 959

RFC 114 RFC 141

RFC 172

RFC 265 RFC 281

RFC 294

RFC 354

RFC 385

RFC 414

RFC 430

RFC 454

RFC 542

RFC 624

RFC 686

RFC 691 RFC 686

RFC 765

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 2 of 49http://www.faqs.org/rfcs/rfc959.html

 SMNT - Structure Mount

 STOU - Store Unique

 RMD - Remove Directory

 MKD - Make Directory

 PWD - Print Directory

 SYST - System

 This specification is compatible with the previous edition. A

 program implemented in conformance to the previous specification

 should automatically be in conformance to this specification.

 2.2. TERMINOLOGY

 ASCII

 The ASCII character set is as defined in the ARPA-Internet

 Protocol Handbook. In FTP, ASCII characters are defined to be

 the lower half of an eight-bit code set (i.e., the most

 significant bit is zero).

 access controls

 Access controls define users' access privileges to the use of a

 system, and to the files in that system. Access controls are

 necessary to prevent unauthorized or accidental use of files.

 It is the prerogative of a server-FTP process to invoke access

 controls.

 byte size

 There are two byte sizes of interest in FTP: the logical byte

 size of the file, and the transfer byte size used for the

 transmission of the data. The transfer byte size is always 8

 bits. The transfer byte size is not necessarily the byte size

 in which data is to be stored in a system, nor the logical byte

 size for interpretation of the structure of the data.

 October 1985

File Transfer Protocol

 control connection

 The communication path between the USER-PI and SERVER-PI for

 the exchange of commands and replies. This connection follows

 the Telnet Protocol.

 data connection

 A full duplex connection over which data is transferred, in a

 specified mode and type. The data transferred may be a part of

 a file, an entire file or a number of files. The path may be

 between a server-DTP and a user-DTP, or between two

 server-DTPs.

 data port

 The passive data transfer process "listens" on the data port

 for a connection from the active transfer process in order to

 open the data connection.

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 3 of 49http://www.faqs.org/rfcs/rfc959.html

 DTP

 The data transfer process establishes and manages the data

 connection. The DTP can be passive or active.

 End-of-Line

 The end-of-line sequence defines the separation of printing

 lines. The sequence is Carriage Return, followed by Line Feed.

 EOF

 The end-of-file condition that defines the end of a file being

 transferred.

 EOR

 The end-of-record condition that defines the end of a record

 being transferred.

 error recovery

 A procedure that allows a user to recover from certain errors

 such as failure of either host system or transfer process. In

 FTP, error recovery may involve restarting a file transfer at a

 given checkpoint.

 October 1985

File Transfer Protocol

 FTP commands

 A set of commands that comprise the control information flowing

 from the user-FTP to the server-FTP process.

 file

 An ordered set of computer data (including programs), of

 arbitrary length, uniquely identified by a pathname.

 mode

 The mode in which data is to be transferred via the data

 connection. The mode defines the data format during transfer

 including EOR and EOF. The transfer modes defined in FTP are

 described in the Section on Transmission Modes.

 NVT

 The Network Virtual Terminal as defined in the Telnet Protocol.

 NVFS

 The Network Virtual File System. A concept which defines a

 standard network file system with standard commands and

 pathname conventions.

 page

 A file may be structured as a set of independent parts called

 pages. FTP supports the transmission of discontinuous files as

 independent indexed pages.

 pathname

 Pathname is defined to be the character string which must be

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 4 of 49http://www.faqs.org/rfcs/rfc959.html

 input to a file system by a user in order to identify a file.

 Pathname normally contains device and/or directory names, and

 file name specification. FTP does not yet specify a standard

 pathname convention. Each user must follow the file naming

 conventions of the file systems involved in the transfer.

 PI

 The protocol interpreter. The user and server sides of the

 protocol have distinct roles implemented in a user-PI and a

 server-PI.

 October 1985

File Transfer Protocol

 record

 A sequential file may be structured as a number of contiguous

 parts called records. Record structures are supported by FTP

 but a file need not have record structure.

 reply

 A reply is an acknowledgment (positive or negative) sent from

 server to user via the control connection in response to FTP

 commands. The general form of a reply is a completion code

 (including error codes) followed by a text string. The codes

 are for use by programs and the text is usually intended for

 human users.

 server-DTP

 The data transfer process, in its normal "active" state,

 establishes the data connection with the "listening" data port.

 It sets up parameters for transfer and storage, and transfers

 data on command from its PI. The DTP can be placed in a

 "passive" state to listen for, rather than initiate a

 connection on the data port.

 server-FTP process

 A process or set of processes which perform the function of

 file transfer in cooperation with a user-FTP process and,

 possibly, another server. The functions consist of a protocol

 interpreter (PI) and a data transfer process (DTP).

 server-PI

 The server protocol interpreter "listens" on Port L for a

 connection from a user-PI and establishes a control

 communication connection. It receives standard FTP commands

 from the user-PI, sends replies, and governs the server-DTP.

 type

 The data representation type used for data transfer and

 storage. Type implies certain transformations between the time

 of data storage and data transfer. The representation types

 defined in FTP are described in the Section on Establishing

 Data Connections.

 October 1985

File Transfer Protocol

 user

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 5 of 49http://www.faqs.org/rfcs/rfc959.html

 A person or a process on behalf of a person wishing to obtain

 file transfer service. The human user may interact directly

 with a server-FTP process, but use of a user-FTP process is

 preferred since the protocol design is weighted towards

 automata.

 user-DTP

 The data transfer process "listens" on the data port for a

 connection from a server-FTP process. If two servers are

 transferring data between them, the user-DTP is inactive.

 user-FTP process

 A set of functions including a protocol interpreter, a data

 transfer process and a user interface which together perform

 the function of file transfer in cooperation with one or more

 server-FTP processes. The user interface allows a local

 language to be used in the command-reply dialogue with the

 user.

 user-PI

 The user protocol interpreter initiates the control connection

 from its port U to the server-FTP process, initiates FTP

 commands, and governs the user-DTP if that process is part of

 the file transfer.

 October 1985

File Transfer Protocol

 2.3. THE FTP MODEL

 With the above definitions in mind, the following model (shown in

 Figure 1) may be diagrammed for an FTP service.

 |/---------\|

 || User || --------

 ||Interface|<--->| User |

 |\----^----/| --------

 ---------- | | |

 |/------\| FTP Commands |/----V----\|

 ||Server|<---------------->| User ||

 || PI || FTP Replies || PI ||

 |\--^---/| |\----^----/|

 | | | | | |

 -------- |/--V---\| Data |/----V----\| --------

 | File |<--->|Server|<---------------->| User |<--->| File |

 |System| || DTP || Connection || DTP || |System|

 -------- |\------/| |\---------/| --------

 ---------- -------------

 Server-FTP USER-FTP

 NOTES: 1. The data connection may be used in either direction.

 2. The data connection need not exist all of the time.

 Figure 1 Model for FTP Use

 In the model described in Figure 1, the user-protocol interpreter

 initiates the control connection. The control connection follows

 the Telnet protocol. At the initiation of the user, standard FTP

 commands are generated by the user-PI and transmitted to the

 server process via the control connection. (The user may

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 6 of 49http://www.faqs.org/rfcs/rfc959.html

 establish a direct control connection to the server-FTP, from a

 TAC terminal for example, and generate standard FTP commands

 independently, bypassing the user-FTP process.) Standard replies

 are sent from the server-PI to the user-PI over the control

 connection in response to the commands.

 The FTP commands specify the parameters for the data connection

 (data port, transfer mode, representation type, and structure) and

 the nature of file system operation (store, retrieve, append,

 delete, etc.). The user-DTP or its designate should "listen" on

 the specified data port, and the server initiate the data

 connection and data transfer in accordance with the specified

 parameters. It should be noted that the data port need not be in

 October 1985

File Transfer Protocol

 the same host that initiates the FTP commands via the control

 connection, but the user or the user-FTP process must ensure a

 "listen" on the specified data port. It ought to also be noted

 that the data connection may be used for simultaneous sending and

 receiving.

 In another situation a user might wish to transfer files between

 two hosts, neither of which is a local host. The user sets up

 control connections to the two servers and then arranges for a

 data connection between them. In this manner, control information

 is passed to the user-PI but data is transferred between the

 server data transfer processes. Following is a model of this

 server-server interaction.

 Control ------------ Control

 ---------->| User-FTP |<-----------

 | | User-PI | |

 | | "C" | |

 V ------------ V

 -------------- --------------

 | Server-FTP | Data Connection | Server-FTP |

 | "A" |<---------------------->| "B" |

 -------------- Port (A) Port (B) --------------

 Figure 2

 The protocol requires that the control connections be open while

 data transfer is in progress. It is the responsibility of the

 user to request the closing of the control connections when

 finished using the FTP service, while it is the server who takes

 the action. The server may abort data transfer if the control

 connections are closed without command.

 The Relationship between FTP and Telnet:

 The FTP uses the Telnet protocol on the control connection.

 This can be achieved in two ways: first, the user-PI or the

 server-PI may implement the rules of the Telnet Protocol

 directly in their own procedures; or, second, the user-PI or

 the server-PI may make use of the existing Telnet module in the

 system.

 Ease of implementaion, sharing code, and modular programming

 argue for the second approach. Efficiency and independence

 October 1985

File Transfer Protocol

 argue for the first approach. In practice, FTP relies on very

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 7 of 49http://www.faqs.org/rfcs/rfc959.html

 little of the Telnet Protocol, so the first approach does not

 necessarily involve a large amount of code.

3. DATA TRANSFER FUNCTIONS

 Files are transferred only via the data connection. The control

 connection is used for the transfer of commands, which describe the

 functions to be performed, and the replies to these commands (see the

 Section on FTP Replies). Several commands are concerned with the

 transfer of data between hosts. These data transfer commands include

 the MODE command which specify how the bits of the data are to be

 transmitted, and the STRUcture and TYPE commands, which are used to

 define the way in which the data are to be represented. The

 transmission and representation are basically independent but the

 "Stream" transmission mode is dependent on the file structure

 attribute and if "Compressed" transmission mode is used, the nature

 of the filler byte depends on the representation type.

 3.1. DATA REPRESENTATION AND STORAGE

 Data is transferred from a storage device in the sending host to a

 storage device in the receiving host. Often it is necessary to

 perform certain transformations on the data because data storage

 representations in the two systems are different. For example,

 NVT-ASCII has different data storage representations in different

 systems. DEC TOPS-20s's generally store NVT-ASCII as five 7-bit

 ASCII characters, left-justified in a 36-bit word. IBM Mainframe's

 store NVT-ASCII as 8-bit EBCDIC codes. Multics stores NVT-ASCII

 as four 9-bit characters in a 36-bit word. It is desirable to

 convert characters into the standard NVT-ASCII representation when

 transmitting text between dissimilar systems. The sending and

 receiving sites would have to perform the necessary

 transformations between the standard representation and their

 internal representations.

 A different problem in representation arises when transmitting

 binary data (not character codes) between host systems with

 different word lengths. It is not always clear how the sender

 should send data, and the receiver store it. For example, when

 transmitting 32-bit bytes from a 32-bit word-length system to a

 36-bit word-length system, it may be desirable (for reasons of

 efficiency and usefulness) to store the 32-bit bytes

 right-justified in a 36-bit word in the latter system. In any

 case, the user should have the option of specifying data

 representation and transformation functions. It should be noted

 October 1985

File Transfer Protocol

 that FTP provides for very limited data type representations.

 Transformations desired beyond this limited capability should be

 performed by the user directly.

 3.1.1. DATA TYPES

 Data representations are handled in FTP by a user specifying a

 representation type. This type may implicitly (as in ASCII or

 EBCDIC) or explicitly (as in Local byte) define a byte size for

 interpretation which is referred to as the "logical byte size."

 Note that this has nothing to do with the byte size used for

 transmission over the data connection, called the "transfer

 byte size", and the two should not be confused. For example,

 NVT-ASCII has a logical byte size of 8 bits. If the type is

 Local byte, then the TYPE command has an obligatory second

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 8 of 49http://www.faqs.org/rfcs/rfc959.html

 parameter specifying the logical byte size. The transfer byte

 size is always 8 bits.

 3.1.1.1. ASCII TYPE

 This is the default type and must be accepted by all FTP

 implementations. It is intended primarily for the transfer

 of text files, except when both hosts would find the EBCDIC

 type more convenient.

 The sender converts the data from an internal character

 representation to the standard 8-bit NVT-ASCII

 representation (see the Telnet specification). The receiver

 will convert the data from the standard form to his own

 internal form.

 In accordance with the NVT standard, the <CRLF> sequence

 should be used where necessary to denote the end of a line

 of text. (See the discussion of file structure at the end

 of the Section on Data Representation and Storage.)

 Using the standard NVT-ASCII representation means that data

 must be interpreted as 8-bit bytes.

 The Format parameter for ASCII and EBCDIC types is discussed

 below.

 October 1985

File Transfer Protocol

 3.1.1.2. EBCDIC TYPE

 This type is intended for efficient transfer between hosts

 which use EBCDIC for their internal character

 representation.

 For transmission, the data are represented as 8-bit EBCDIC

 characters. The character code is the only difference

 between the functional specifications of EBCDIC and ASCII

 types.

 End-of-line (as opposed to end-of-record--see the discussion

 of structure) will probably be rarely used with EBCDIC type

 for purposes of denoting structure, but where it is

 necessary the <NL> character should be used.

 3.1.1.3. IMAGE TYPE

 The data are sent as contiguous bits which, for transfer,

 are packed into the 8-bit transfer bytes. The receiving

 site must store the data as contiguous bits. The structure

 of the storage system might necessitate the padding of the

 file (or of each record, for a record-structured file) to

 some convenient boundary (byte, word or block). This

 padding, which must be all zeros, may occur only at the end

 of the file (or at the end of each record) and there must be

 a way of identifying the padding bits so that they may be

 stripped off if the file is retrieved. The padding

 transformation should be well publicized to enable a user to

 process a file at the storage site.

 Image type is intended for the efficient storage and

 retrieval of files and for the transfer of binary data. It

 is recommended that this type be accepted by all FTP

 implementations.

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 9 of 49http://www.faqs.org/rfcs/rfc959.html

 3.1.1.4. LOCAL TYPE

 The data is transferred in logical bytes of the size

 specified by the obligatory second parameter, Byte size.

 The value of Byte size must be a decimal integer; there is

 no default value. The logical byte size is not necessarily

 the same as the transfer byte size. If there is a

 difference in byte sizes, then the logical bytes should be

 packed contiguously, disregarding transfer byte boundaries

 and with any necessary padding at the end.

 October 1985

File Transfer Protocol

 When the data reaches the receiving host, it will be

 transformed in a manner dependent on the logical byte size

 and the particular host. This transformation must be

 invertible (i.e., an identical file can be retrieved if the

 same parameters are used) and should be well publicized by

 the FTP implementors.

 For example, a user sending 36-bit floating-point numbers to

 a host with a 32-bit word could send that data as Local byte

 with a logical byte size of 36. The receiving host would

 then be expected to store the logical bytes so that they

 could be easily manipulated; in this example putting the

 36-bit logical bytes into 64-bit double words should

 suffice.

 In another example, a pair of hosts with a 36-bit word size

 may send data to one another in words by using TYPE L 36.

 The data would be sent in the 8-bit transmission bytes

 packed so that 9 transmission bytes carried two host words.

 3.1.1.5. FORMAT CONTROL

 The types ASCII and EBCDIC also take a second (optional)

 parameter; this is to indicate what kind of vertical format

 control, if any, is associated with a file. The following

 data representation types are defined in FTP:

 A character file may be transferred to a host for one of

 three purposes: for printing, for storage and later

 retrieval, or for processing. If a file is sent for

 printing, the receiving host must know how the vertical

 format control is represented. In the second case, it must

 be possible to store a file at a host and then retrieve it

 later in exactly the same form. Finally, it should be

 possible to move a file from one host to another and process

 the file at the second host without undue trouble. A single

 ASCII or EBCDIC format does not satisfy all these

 conditions. Therefore, these types have a second parameter

 specifying one of the following three formats:

 3.1.1.5.1. NON PRINT

 This is the default format to be used if the second

 (format) parameter is omitted. Non-print format must be

 accepted by all FTP implementations.

 October 1985

File Transfer Protocol

 The file need contain no vertical format information. If

 it is passed to a printer process, this process may

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 10 of 49http://www.faqs.org/rfcs/rfc959.html

 assume standard values for spacing and margins.

 Normally, this format will be used with files destined

 for processing or just storage.

 3.1.1.5.2. TELNET FORMAT CONTROLS

 The file contains ASCII/EBCDIC vertical format controls

 (i.e., <CR>, <LF>, <NL>, <VT>, <FF>) which the printer

 process will interpret appropriately. <CRLF>, in exactly

 this sequence, also denotes end-of-line.

 3.1.1.5.2. CARRIAGE CONTROL (ASA)

 The file contains ASA (FORTRAN) vertical format control

 characters. (See Appendix C; and Communications

 of the ACM, Vol. 7, No. 10, p. 606, October 1964.) In a

 line or a record formatted according to the ASA Standard,

 the first character is not to be printed. Instead, it

 should be used to determine the vertical movement of the

 paper which should take place before the rest of the

 record is printed.

 The ASA Standard specifies the following control

 characters:

 Character Vertical Spacing

 blank Move paper up one line

 0 Move paper up two lines

 1 Move paper to top of next page

 + No movement, i.e., overprint

 Clearly there must be some way for a printer process to

 distinguish the end of the structural entity. If a file

 has record structure (see below) this is no problem;

 records will be explicitly marked during transfer and

 storage. If the file has no record structure, the <CRLF>

 end-of-line sequence is used to separate printing lines,

 but these format effectors are overridden by the ASA

 controls.

 October 1985

File Transfer Protocol

 3.1.2. DATA STRUCTURES

 In addition to different representation types, FTP allows the

 structure of a file to be specified. Three file structures are

 defined in FTP:

 file-structure, where there is no internal structure and

 the file is considered to be a

 continuous sequence of data bytes,

 record-structure, where the file is made up of sequential

 records,

 and page-structure, where the file is made up of independent

 indexed pages.

 File-structure is the default to be assumed if the STRUcture

 command has not been used but both file and record structures

 must be accepted for "text" files (i.e., files with TYPE ASCII

 or EBCDIC) by all FTP implementations. The structure of a file

RFC 740

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 11 of 49http://www.faqs.org/rfcs/rfc959.html

 will affect both the transfer mode of a file (see the Section

 on Transmission Modes) and the interpretation and storage of

 the file.

 The "natural" structure of a file will depend on which host

 stores the file. A source-code file will usually be stored on

 an IBM Mainframe in fixed length records but on a DEC TOPS-20

 as a stream of characters partitioned into lines, for example

 by <CRLF>. If the transfer of files between such disparate

 sites is to be useful, there must be some way for one site to

 recognize the other's assumptions about the file.

 With some sites being naturally file-oriented and others

 naturally record-oriented there may be problems if a file with

 one structure is sent to a host oriented to the other. If a

 text file is sent with record-structure to a host which is file

 oriented, then that host should apply an internal

 transformation to the file based on the record structure.

 Obviously, this transformation should be useful, but it must

 also be invertible so that an identical file may be retrieved

 using record structure.

 In the case of a file being sent with file-structure to a

 record-oriented host, there exists the question of what

 criteria the host should use to divide the file into records

 which can be processed locally. If this division is necessary,

 the FTP implementation should use the end-of-line sequence,

 October 1985

File Transfer Protocol

 <CRLF> for ASCII, or <NL> for EBCDIC text files, as the

 delimiter. If an FTP implementation adopts this technique, it

 must be prepared to reverse the transformation if the file is

 retrieved with file-structure.

 3.1.2.1. FILE STRUCTURE

 File structure is the default to be assumed if the STRUcture

 command has not been used.

 In file-structure there is no internal structure and the

 file is considered to be a continuous sequence of data

 bytes.

 3.1.2.2. RECORD STRUCTURE

 Record structures must be accepted for "text" files (i.e.,

 files with TYPE ASCII or EBCDIC) by all FTP implementations.

 In record-structure the file is made up of sequential

 records.

 3.1.2.3. PAGE STRUCTURE

 To transmit files that are discontinuous, FTP defines a page

 structure. Files of this type are sometimes known as

 "random access files" or even as "holey files". In these

 files there is sometimes other information associated with

 the file as a whole (e.g., a file descriptor), or with a

 section of the file (e.g., page access controls), or both.

 In FTP, the sections of the file are called pages.

 To provide for various page sizes and associated

 information, each page is sent with a page header. The page

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 12 of 49http://www.faqs.org/rfcs/rfc959.html

 header has the following defined fields:

 Header Length

 The number of logical bytes in the page header

 including this byte. The minimum header length is 4.

 Page Index

 The logical page number of this section of the file.

 This is not the transmission sequence number of this

 page, but the index used to identify this page of the

 file.

 October 1985

File Transfer Protocol

 Data Length

 The number of logical bytes in the page data. The

 minimum data length is 0.

 Page Type

 The type of page this is. The following page types

 are defined:

 0 = Last Page

 This is used to indicate the end of a paged

 structured transmission. The header length must

 be 4, and the data length must be 0.

 1 = Simple Page

 This is the normal type for simple paged files

 with no page level associated control

 information. The header length must be 4.

 2 = Descriptor Page

 This type is used to transmit the descriptive

 information for the file as a whole.

 3 = Access Controlled Page

 This type includes an additional header field

 for paged files with page level access control

 information. The header length must be 5.

 Optional Fields

 Further header fields may be used to supply per page

 control information, for example, per page access

 control.

 All fields are one logical byte in length. The logical byte

 size is specified by the TYPE command. See Appendix I for

 further details and a specific case at the page structure.

 A note of caution about parameters: a file must be stored and

 retrieved with the same parameters if the retrieved version is to

 October 1985

File Transfer Protocol

 be identical to the version originally transmitted. Conversely,

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 13 of 49http://www.faqs.org/rfcs/rfc959.html

 FTP implementations must return a file identical to the original

 if the parameters used to store and retrieve a file are the same.

 3.2. ESTABLISHING DATA CONNECTIONS

 The mechanics of transferring data consists of setting up the data

 connection to the appropriate ports and choosing the parameters

 for transfer. Both the user and the server-DTPs have a default

 data port. The user-process default data port is the same as the

 control connection port (i.e., U). The server-process default

 data port is the port adjacent to the control connection port

 (i.e., L-1).

 The transfer byte size is 8-bit bytes. This byte size is relevant

 only for the actual transfer of the data; it has no bearing on

 representation of the data within a host's file system.

 The passive data transfer process (this may be a user-DTP or a

 second server-DTP) shall "listen" on the data port prior to

 sending a transfer request command. The FTP request command

 determines the direction of the data transfer. The server, upon

 receiving the transfer request, will initiate the data connection

 to the port. When the connection is established, the data

 transfer begins between DTP's, and the server-PI sends a

 confirming reply to the user-PI.

 Every FTP implementation must support the use of the default data

 ports, and only the USER-PI can initiate a change to non-default

 ports.

 It is possible for the user to specify an alternate data port by

 use of the PORT command. The user may want a file dumped on a TAC

 line printer or retrieved from a third party host. In the latter

 case, the user-PI sets up control connections with both

 server-PI's. One server is then told (by an FTP command) to

 "listen" for a connection which the other will initiate. The

 user-PI sends one server-PI a PORT command indicating the data

 port of the other. Finally, both are sent the appropriate

 transfer commands. The exact sequence of commands and replies

 sent between the user-controller and the servers is defined in the

 Section on FTP Replies.

 In general, it is the server's responsibility to maintain the data

 connection--to initiate it and to close it. The exception to this

 October 1985

File Transfer Protocol

 is when the user-DTP is sending the data in a transfer mode that

 requires the connection to be closed to indicate EOF. The server

 MUST close the data connection under the following conditions:

 1. The server has completed sending data in a transfer mode

 that requires a close to indicate EOF.

 2. The server receives an ABORT command from the user.

 3. The port specification is changed by a command from the

 user.

 4. The control connection is closed legally or otherwise.

 5. An irrecoverable error condition occurs.

 Otherwise the close is a server option, the exercise of which the

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 14 of 49http://www.faqs.org/rfcs/rfc959.html

 server must indicate to the user-process by either a 250 or 226

 reply only.

 3.3. DATA CONNECTION MANAGEMENT

 Default Data Connection Ports: All FTP implementations must

 support use of the default data connection ports, and only the

 User-PI may initiate the use of non-default ports.

 Negotiating Non-Default Data Ports: The User-PI may specify a

 non-default user side data port with the PORT command. The

 User-PI may request the server side to identify a non-default

 server side data port with the PASV command. Since a connection

 is defined by the pair of addresses, either of these actions is

 enough to get a different data connection, still it is permitted

 to do both commands to use new ports on both ends of the data

 connection.

 Reuse of the Data Connection: When using the stream mode of data

 transfer the end of the file must be indicated by closing the

 connection. This causes a problem if multiple files are to be

 transfered in the session, due to need for TCP to hold the

 connection record for a time out period to guarantee the reliable

 communication. Thus the connection can not be reopened at once.

 There are two solutions to this problem. The first is to

 negotiate a non-default port. The second is to use another

 transfer mode.

 A comment on transfer modes. The stream transfer mode is

 October 1985

File Transfer Protocol

 inherently unreliable, since one can not determine if the

 connection closed prematurely or not. The other transfer modes

 (Block, Compressed) do not close the connection to indicate the

 end of file. They have enough FTP encoding that the data

 connection can be parsed to determine the end of the file.

 Thus using these modes one can leave the data connection open

 for multiple file transfers.

 3.4. TRANSMISSION MODES

 The next consideration in transferring data is choosing the

 appropriate transmission mode. There are three modes: one which

 formats the data and allows for restart procedures; one which also

 compresses the data for efficient transfer; and one which passes

 the data with little or no processing. In this last case the mode

 interacts with the structure attribute to determine the type of

 processing. In the compressed mode, the representation type

 determines the filler byte.

 All data transfers must be completed with an end-of-file (EOF)

 which may be explicitly stated or implied by the closing of the

 data connection. For files with record structure, all the

 end-of-record markers (EOR) are explicit, including the final one.

 For files transmitted in page structure a "last-page" page type is

 used.

 NOTE: In the rest of this section, byte means "transfer byte"

 except where explicitly stated otherwise.

 For the purpose of standardized transfer, the sending host will

 translate its internal end of line or end of record denotation

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 15 of 49http://www.faqs.org/rfcs/rfc959.html

 into the representation prescribed by the transfer mode and file

 structure, and the receiving host will perform the inverse

 translation to its internal denotation. An IBM Mainframe record

 count field may not be recognized at another host, so the

 end-of-record information may be transferred as a two byte control

 code in Stream mode or as a flagged bit in a Block or Compressed

 mode descriptor. End-of-line in an ASCII or EBCDIC file with no

 record structure should be indicated by <CRLF> or <NL>,

 respectively. Since these transformations imply extra work for

 some systems, identical systems transferring non-record structured

 text files might wish to use a binary representation and stream

 mode for the transfer.

 October 1985

File Transfer Protocol

 The following transmission modes are defined in FTP:

 3.4.1. STREAM MODE

 The data is transmitted as a stream of bytes. There is no

 restriction on the representation type used; record structures

 are allowed.

 In a record structured file EOR and EOF will each be indicated

 by a two-byte control code. The first byte of the control code

 will be all ones, the escape character. The second byte will

 have the low order bit on and zeros elsewhere for EOR and the

 second low order bit on for EOF; that is, the byte will have

 value 1 for EOR and value 2 for EOF. EOR and EOF may be

 indicated together on the last byte transmitted by turning both

 low order bits on (i.e., the value 3). If a byte of all ones

 was intended to be sent as data, it should be repeated in the

 second byte of the control code.

 If the structure is a file structure, the EOF is indicated by

 the sending host closing the data connection and all bytes are

 data bytes.

 3.4.2. BLOCK MODE

 The file is transmitted as a series of data blocks preceded by

 one or more header bytes. The header bytes contain a count

 field, and descriptor code. The count field indicates the

 total length of the data block in bytes, thus marking the

 beginning of the next data block (there are no filler bits).

 The descriptor code defines: last block in the file (EOF) last

 block in the record (EOR), restart marker (see the Section on

 Error Recovery and Restart) or suspect data (i.e., the data

 being transferred is suspected of errors and is not reliable).

 This last code is NOT intended for error control within FTP.

 It is motivated by the desire of sites exchanging certain types

 of data (e.g., seismic or weather data) to send and receive all

 the data despite local errors (such as "magnetic tape read

 errors"), but to indicate in the transmission that certain

 portions are suspect). Record structures are allowed in this

 mode, and any representation type may be used.

 The header consists of the three bytes. Of the 24 bits of

 header information, the 16 low order bits shall represent byte

 count, and the 8 high order bits shall represent descriptor

 codes as shown below.

 October 1985

File Transfer Protocol

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 16 of 49http://www.faqs.org/rfcs/rfc959.html

 Block Header

 +----------------+----------------+----------------+

 | Descriptor | Byte Count |

 | 8 bits | 16 bits |

 +----------------+----------------+----------------+

 The descriptor codes are indicated by bit flags in the

 descriptor byte. Four codes have been assigned, where each

 code number is the decimal value of the corresponding bit in

 the byte.

 Code Meaning

 128 End of data block is EOR

 64 End of data block is EOF

 32 Suspected errors in data block

 16 Data block is a restart marker

 With this encoding, more than one descriptor coded condition

 may exist for a particular block. As many bits as necessary

 may be flagged.

 The restart marker is embedded in the data stream as an

 integral number of 8-bit bytes representing printable

 characters in the language being used over the control

 connection (e.g., default--NVT-ASCII). <SP> (Space, in the

 appropriate language) must not be used WITHIN a restart marker.

 For example, to transmit a six-character marker, the following

 would be sent:

 +--------+--------+--------+

 |Descrptr| Byte count |

 |code= 16| = 6 |

 +--------+--------+--------+

 +--------+--------+--------+

 | Marker | Marker | Marker |

 | 8 bits | 8 bits | 8 bits |

 +--------+--------+--------+

 +--------+--------+--------+

 | Marker | Marker | Marker |

 | 8 bits | 8 bits | 8 bits |

 +--------+--------+--------+

 October 1985

File Transfer Protocol

 3.4.3. COMPRESSED MODE

 There are three kinds of information to be sent: regular data,

 sent in a byte string; compressed data, consisting of

 replications or filler; and control information, sent in a

 two-byte escape sequence. If n>0 bytes (up to 127) of regular

 data are sent, these n bytes are preceded by a byte with the

 left-most bit set to 0 and the right-most 7 bits containing the

 number n.

 Byte string:

 1 7 8 8

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 |0| n | | d(1) | ... | d(n) |

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 17 of 49http://www.faqs.org/rfcs/rfc959.html

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 ^ ^

 |---n bytes---|

 of data

 String of n data bytes d(1),..., d(n)

 Count n must be positive.

 To compress a string of n replications of the data byte d, the

 following 2 bytes are sent:

 Replicated Byte:

 2 6 8

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 |1 0| n | | d |

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 A string of n filler bytes can be compressed into a single

 byte, where the filler byte varies with the representation

 type. If the type is ASCII or EBCDIC the filler byte is <SP>

 (Space, ASCII code 32, EBCDIC code 64). If the type is Image

 or Local byte the filler is a zero byte.

 Filler String:

 2 6

 +-+-+-+-+-+-+-+-+

 |1 1| n |

 +-+-+-+-+-+-+-+-+

 The escape sequence is a double byte, the first of which is the

 October 1985

File Transfer Protocol

 escape byte (all zeros) and the second of which contains

 descriptor codes as defined in Block mode. The descriptor

 codes have the same meaning as in Block mode and apply to the

 succeeding string of bytes.

 Compressed mode is useful for obtaining increased bandwidth on

 very large network transmissions at a little extra CPU cost.

 It can be most effectively used to reduce the size of printer

 files such as those generated by RJE hosts.

 3.5. ERROR RECOVERY AND RESTART

 There is no provision for detecting bits lost or scrambled in data

 transfer; this level of error control is handled by the TCP.

 However, a restart procedure is provided to protect users from

 gross system failures (including failures of a host, an

 FTP-process, or the underlying network).

 The restart procedure is defined only for the block and compressed

 modes of data transfer. It requires the sender of data to insert

 a special marker code in the data stream with some marker

 information. The marker information has meaning only to the

 sender, but must consist of printable characters in the default or

 negotiated language of the control connection (ASCII or EBCDIC).

 The marker could represent a bit-count, a record-count, or any

 other information by which a system may identify a data

 checkpoint. The receiver of data, if it implements the restart

 procedure, would then mark the corresponding position of this

 marker in the receiving system, and return this information to the

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 18 of 49http://www.faqs.org/rfcs/rfc959.html

 user.

 In the event of a system failure, the user can restart the data

 transfer by identifying the marker point with the FTP restart

 procedure. The following example illustrates the use of the

 restart procedure.

 The sender of the data inserts an appropriate marker block in the

 data stream at a convenient point. The receiving host marks the

 corresponding data point in its file system and conveys the last

 known sender and receiver marker information to the user, either

 directly or over the control connection in a 110 reply (depending

 on who is the sender). In the event of a system failure, the user

 or controller process restarts the server at the last server

 marker by sending a restart command with server's marker code as

 its argument. The restart command is transmitted over the control

 October 1985

File Transfer Protocol

 connection and is immediately followed by the command (such as

 RETR, STOR or LIST) which was being executed when the system

 failure occurred.

4. FILE TRANSFER FUNCTIONS

 The communication channel from the user-PI to the server-PI is

 established as a TCP connection from the user to the standard server

 port. The user protocol interpreter is responsible for sending FTP

 commands and interpreting the replies received; the server-PI

 interprets commands, sends replies and directs its DTP to set up the

 data connection and transfer the data. If the second party to the

 data transfer (the passive transfer process) is the user-DTP, then it

 is governed through the internal protocol of the user-FTP host; if it

 is a second server-DTP, then it is governed by its PI on command from

 the user-PI. The FTP replies are discussed in the next section. In

 the description of a few of the commands in this section, it is

 helpful to be explicit about the possible replies.

 4.1. FTP COMMANDS

 4.1.1. ACCESS CONTROL COMMANDS

 The following commands specify access control identifiers

 (command codes are shown in parentheses).

 USER NAME (USER)

 The argument field is a Telnet string identifying the user.

 The user identification is that which is required by the

 server for access to its file system. This command will

 normally be the first command transmitted by the user after

 the control connections are made (some servers may require

 this). Additional identification information in the form of

 a password and/or an account command may also be required by

 some servers. Servers may allow a new USER command to be

 entered at any point in order to change the access control

 and/or accounting information. This has the effect of

 flushing any user, password, and account information already

 supplied and beginning the login sequence again. All

 transfer parameters are unchanged and any file transfer in

 progress is completed under the old access control

 parameters.

 October 1985

File Transfer Protocol

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 19 of 49http://www.faqs.org/rfcs/rfc959.html

 PASSWORD (PASS)

 The argument field is a Telnet string specifying the user's

 password. This command must be immediately preceded by the

 user name command, and, for some sites, completes the user's

 identification for access control. Since password

 information is quite sensitive, it is desirable in general

 to "mask" it or suppress typeout. It appears that the

 server has no foolproof way to achieve this. It is

 therefore the responsibility of the user-FTP process to hide

 the sensitive password information.

 ACCOUNT (ACCT)

 The argument field is a Telnet string identifying the user's

 account. The command is not necessarily related to the USER

 command, as some sites may require an account for login and

 others only for specific access, such as storing files. In

 the latter case the command may arrive at any time.

 There are reply codes to differentiate these cases for the

 automation: when account information is required for login,

 the response to a successful PASSword command is reply code

 332. On the other hand, if account information is NOT

 required for login, the reply to a successful PASSword

 command is 230; and if the account information is needed for

 a command issued later in the dialogue, the server should

 return a 332 or 532 reply depending on whether it stores

 (pending receipt of the ACCounT command) or discards the

 command, respectively.

 CHANGE WORKING DIRECTORY (CWD)

 This command allows the user to work with a different

 directory or dataset for file storage or retrieval without

 altering his login or accounting information. Transfer

 parameters are similarly unchanged. The argument is a

 pathname specifying a directory or other system dependent

 file group designator.

 CHANGE TO PARENT DIRECTORY (CDUP)

 This command is a special case of CWD, and is included to

 simplify the implementation of programs for transferring

 directory trees between operating systems having different

 October 1985

File Transfer Protocol

 syntaxes for naming the parent directory. The reply codes

 shall be identical to the reply codes of CWD. See

 Appendix II for further details.

 STRUCTURE MOUNT (SMNT)

 This command allows the user to mount a different file

 system data structure without altering his login or

 accounting information. Transfer parameters are similarly

 unchanged. The argument is a pathname specifying a

 directory or other system dependent file group designator.

 REINITIALIZE (REIN)

 This command terminates a USER, flushing all I/O and account

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 20 of 49http://www.faqs.org/rfcs/rfc959.html

 information, except to allow any transfer in progress to be

 completed. All parameters are reset to the default settings

 and the control connection is left open. This is identical

 to the state in which a user finds himself immediately after

 the control connection is opened. A USER command may be

 expected to follow.

 LOGOUT (QUIT)

 This command terminates a USER and if file transfer is not

 in progress, the server closes the control connection. If

 file transfer is in progress, the connection will remain

 open for result response and the server will then close it.

 If the user-process is transferring files for several USERs

 but does not wish to close and then reopen connections for

 each, then the REIN command should be used instead of QUIT.

 An unexpected close on the control connection will cause the

 server to take the effective action of an abort (ABOR) and a

 logout (QUIT).

 4.1.2. TRANSFER PARAMETER COMMANDS

 All data transfer parameters have default values, and the

 commands specifying data transfer parameters are required only

 if the default parameter values are to be changed. The default

 value is the last specified value, or if no value has been

 specified, the standard default value is as stated here. This

 implies that the server must "remember" the applicable default

 values. The commands may be in any order except that they must

 precede the FTP service request. The following commands

 specify data transfer parameters:

 October 1985

File Transfer Protocol

 DATA PORT (PORT)

 The argument is a HOST-PORT specification for the data port

 to be used in data connection. There are defaults for both

 the user and server data ports, and under normal

 circumstances this command and its reply are not needed. If

 this command is used, the argument is the concatenation of a

 32-bit internet host address and a 16-bit TCP port address.

 This address information is broken into 8-bit fields and the

 value of each field is transmitted as a decimal number (in

 character string representation). The fields are separated

 by commas. A port command would be:

 PORT h1,h2,h3,h4,p1,p2

 where h1 is the high order 8 bits of the internet host

 address.

 PASSIVE (PASV)

 This command requests the server-DTP to "listen" on a data

 port (which is not its default data port) and to wait for a

 connection rather than initiate one upon receipt of a

 transfer command. The response to this command includes the

 host and port address this server is listening on.

 REPRESENTATION TYPE (TYPE)

 The argument specifies the representation type as described

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 21 of 49http://www.faqs.org/rfcs/rfc959.html

 in the Section on Data Representation and Storage. Several

 types take a second parameter. The first parameter is

 denoted by a single Telnet character, as is the second

 Format parameter for ASCII and EBCDIC; the second parameter

 for local byte is a decimal integer to indicate Bytesize.

 The parameters are separated by a <SP> (Space, ASCII code

 32).

 The following codes are assigned for type:

 \ /

 A - ASCII | | N - Non-print

 |-><-| T - Telnet format effectors

 E - EBCDIC| | C - Carriage Control (ASA)

 / \

 I - Image

 L <byte size> - Local byte Byte size

 October 1985

File Transfer Protocol

 The default representation type is ASCII Non-print. If the

 Format parameter is changed, and later just the first

 argument is changed, Format then returns to the Non-print

 default.

 FILE STRUCTURE (STRU)

 The argument is a single Telnet character code specifying

 file structure described in the Section on Data

 Representation and Storage.

 The following codes are assigned for structure:

 F - File (no record structure)

 R - Record structure

 P - Page structure

 The default structure is File.

 TRANSFER MODE (MODE)

 The argument is a single Telnet character code specifying

 the data transfer modes described in the Section on

 Transmission Modes.

 The following codes are assigned for transfer modes:

 S - Stream

 B - Block

 C - Compressed

 The default transfer mode is Stream.

 4.1.3. FTP SERVICE COMMANDS

 The FTP service commands define the file transfer or the file

 system function requested by the user. The argument of an FTP

 service command will normally be a pathname. The syntax of

 pathnames must conform to server site conventions (with

 standard defaults applicable), and the language conventions of

 the control connection. The suggested default handling is to

 use the last specified device, directory or file name, or the

 standard default defined for local users. The commands may be

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 22 of 49http://www.faqs.org/rfcs/rfc959.html

 in any order except that a "rename from" command must be

 followed by a "rename to" command and the restart command must

 be followed by the interrupted service command (e.g., STOR or

 RETR). The data, when transferred in response to FTP service

 October 1985

File Transfer Protocol

 commands, shall always be sent over the data connection, except

 for certain informative replies. The following commands

 specify FTP service requests:

 RETRIEVE (RETR)

 This command causes the server-DTP to transfer a copy of the

 file, specified in the pathname, to the server- or user-DTP

 at the other end of the data connection. The status and

 contents of the file at the server site shall be unaffected.

 STORE (STOR)

 This command causes the server-DTP to accept the data

 transferred via the data connection and to store the data as

 a file at the server site. If the file specified in the

 pathname exists at the server site, then its contents shall

 be replaced by the data being transferred. A new file is

 created at the server site if the file specified in the

 pathname does not already exist.

 STORE UNIQUE (STOU)

 This command behaves like STOR except that the resultant

 file is to be created in the current directory under a name

 unique to that directory. The 250 Transfer Started response

 must include the name generated.

 APPEND (with create) (APPE)

 This command causes the server-DTP to accept the data

 transferred via the data connection and to store the data in

 a file at the server site. If the file specified in the

 pathname exists at the server site, then the data shall be

 appended to that file; otherwise the file specified in the

 pathname shall be created at the server site.

 ALLOCATE (ALLO)

 This command may be required by some servers to reserve

 sufficient storage to accommodate the new file to be

 transferred. The argument shall be a decimal integer

 representing the number of bytes (using the logical byte

 size) of storage to be reserved for the file. For files

 sent with record or page structure a maximum record or page

 size (in logical bytes) might also be necessary; this is

 indicated by a decimal integer in a second argument field of

 October 1985

File Transfer Protocol

 the command. This second argument is optional, but when

 present should be separated from the first by the three

 Telnet characters <SP> R <SP>. This command shall be

 followed by a STORe or APPEnd command. The ALLO command

 should be treated as a NOOP (no operation) by those servers

 which do not require that the maximum size of the file be

 declared beforehand, and those servers interested in only

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 23 of 49http://www.faqs.org/rfcs/rfc959.html

 the maximum record or page size should accept a dummy value

 in the first argument and ignore it.

 RESTART (REST)

 The argument field represents the server marker at which

 file transfer is to be restarted. This command does not

 cause file transfer but skips over the file to the specified

 data checkpoint. This command shall be immediately followed

 by the appropriate FTP service command which shall cause

 file transfer to resume.

 RENAME FROM (RNFR)

 This command specifies the old pathname of the file which is

 to be renamed. This command must be immediately followed by

 a "rename to" command specifying the new file pathname.

 RENAME TO (RNTO)

 This command specifies the new pathname of the file

 specified in the immediately preceding "rename from"

 command. Together the two commands cause a file to be

 renamed.

 ABORT (ABOR)

 This command tells the server to abort the previous FTP

 service command and any associated transfer of data. The

 abort command may require "special action", as discussed in

 the Section on FTP Commands, to force recognition by the

 server. No action is to be taken if the previous command

 has been completed (including data transfer). The control

 connection is not to be closed by the server, but the data

 connection must be closed.

 There are two cases for the server upon receipt of this

 command: (1) the FTP service command was already completed,

 or (2) the FTP service command is still in progress.

 October 1985

File Transfer Protocol

 In the first case, the server closes the data connection

 (if it is open) and responds with a 226 reply, indicating

 that the abort command was successfully processed.

 In the second case, the server aborts the FTP service in

 progress and closes the data connection, returning a 426

 reply to indicate that the service request terminated

 abnormally. The server then sends a 226 reply,

 indicating that the abort command was successfully

 processed.

 DELETE (DELE)

 This command causes the file specified in the pathname to be

 deleted at the server site. If an extra level of protection

 is desired (such as the query, "Do you really wish to

 delete?"), it should be provided by the user-FTP process.

 REMOVE DIRECTORY (RMD)

 This command causes the directory specified in the pathname

 to be removed as a directory (if the pathname is absolute)

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 24 of 49http://www.faqs.org/rfcs/rfc959.html

 or as a subdirectory of the current working directory (if

 the pathname is relative). See Appendix II.

 MAKE DIRECTORY (MKD)

 This command causes the directory specified in the pathname

 to be created as a directory (if the pathname is absolute)

 or as a subdirectory of the current working directory (if

 the pathname is relative). See Appendix II.

 PRINT WORKING DIRECTORY (PWD)

 This command causes the name of the current working

 directory to be returned in the reply. See Appendix II.

 LIST (LIST)

 This command causes a list to be sent from the server to the

 passive DTP. If the pathname specifies a directory or other

 group of files, the server should transfer a list of files

 in the specified directory. If the pathname specifies a

 file then the server should send current information on the

 file. A null argument implies the user's current working or

 default directory. The data transfer is over the data

 connection in type ASCII or type EBCDIC. (The user must

 October 1985

File Transfer Protocol

 ensure that the TYPE is appropriately ASCII or EBCDIC).

 Since the information on a file may vary widely from system

 to system, this information may be hard to use automatically

 in a program, but may be quite useful to a human user.

 NAME LIST (NLST)

 This command causes a directory listing to be sent from

 server to user site. The pathname should specify a

 directory or other system-specific file group descriptor; a

 null argument implies the current directory. The server

 will return a stream of names of files and no other

 information. The data will be transferred in ASCII or

 EBCDIC type over the data connection as valid pathname

 strings separated by <CRLF> or <NL>. (Again the user must

 ensure that the TYPE is correct.) This command is intended

 to return information that can be used by a program to

 further process the files automatically. For example, in

 the implementation of a "multiple get" function.

 SITE PARAMETERS (SITE)

 This command is used by the server to provide services

 specific to his system that are essential to file transfer

 but not sufficiently universal to be included as commands in

 the protocol. The nature of these services and the

 specification of their syntax can be stated in a reply to

 the HELP SITE command.

 SYSTEM (SYST)

 This command is used to find out the type of operating

 system at the server. The reply shall have as its first

 word one of the system names listed in the current version

 of the Assigned Numbers document [4].

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 25 of 49http://www.faqs.org/rfcs/rfc959.html

 STATUS (STAT)

 This command shall cause a status response to be sent over

 the control connection in the form of a reply. The command

 may be sent during a file transfer (along with the Telnet IP

 and Synch signals--see the Section on FTP Commands) in which

 case the server will respond with the status of the

 operation in progress, or it may be sent between file

 transfers. In the latter case, the command may have an

 argument field. If the argument is a pathname, the command

 is analogous to the "list" command except that data shall be

 October 1985

File Transfer Protocol

 transferred over the control connection. If a partial

 pathname is given, the server may respond with a list of

 file names or attributes associated with that specification.

 If no argument is given, the server should return general

 status information about the server FTP process. This

 should include current values of all transfer parameters and

 the status of connections.

 HELP (HELP)

 This command shall cause the server to send helpful

 information regarding its implementation status over the

 control connection to the user. The command may take an

 argument (e.g., any command name) and return more specific

 information as a response. The reply is type 211 or 214.

 It is suggested that HELP be allowed before entering a USER

 command. The server may use this reply to specify

 site-dependent parameters, e.g., in response to HELP SITE.

 NOOP (NOOP)

 This command does not affect any parameters or previously

 entered commands. It specifies no action other than that the

 server send an OK reply.

 The File Transfer Protocol follows the specifications of the Telnet

 protocol for all communications over the control connection. Since

 the language used for Telnet communication may be a negotiated

 option, all references in the next two sections will be to the

 "Telnet language" and the corresponding "Telnet end-of-line code".

 Currently, one may take these to mean NVT-ASCII and <CRLF>. No other

 specifications of the Telnet protocol will be cited.

 FTP commands are "Telnet strings" terminated by the "Telnet end of

 line code". The command codes themselves are alphabetic characters

 terminated by the character <SP> (Space) if parameters follow and

 Telnet-EOL otherwise. The command codes and the semantics of

 commands are described in this section; the detailed syntax of

 commands is specified in the Section on Commands, the reply sequences

 are discussed in the Section on Sequencing of Commands and Replies,

 and scenarios illustrating the use of commands are provided in the

 Section on Typical FTP Scenarios.

 FTP commands may be partitioned as those specifying access-control

 identifiers, data transfer parameters, or FTP service requests.

 Certain commands (such as ABOR, STAT, QUIT) may be sent over the

 control connection while a data transfer is in progress. Some

 October 1985

File Transfer Protocol

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 26 of 49http://www.faqs.org/rfcs/rfc959.html

 servers may not be able to monitor the control and data connections

 simultaneously, in which case some special action will be necessary

 to get the server's attention. The following ordered format is

 tentatively recommended:

 1. User system inserts the Telnet "Interrupt Process" (IP) signal

 in the Telnet stream.

 2. User system sends the Telnet "Synch" signal.

 3. User system inserts the command (e.g., ABOR) in the Telnet

 stream.

 4. Server PI, after receiving "IP", scans the Telnet stream for

 EXACTLY ONE FTP command.

 (For other servers this may not be necessary but the actions listed

 above should have no unusual effect.)

 4.2. FTP REPLIES

 Replies to File Transfer Protocol commands are devised to ensure

 the synchronization of requests and actions in the process of file

 transfer, and to guarantee that the user process always knows the

 state of the Server. Every command must generate at least one

 reply, although there may be more than one; in the latter case,

 the multiple replies must be easily distinguished. In addition,

 some commands occur in sequential groups, such as USER, PASS and

 ACCT, or RNFR and RNTO. The replies show the existence of an

 intermediate state if all preceding commands have been successful.

 A failure at any point in the sequence necessitates the repetition

 of the entire sequence from the beginning.

 The details of the command-reply sequence are made explicit in

 a set of state diagrams below.

 An FTP reply consists of a three digit number (transmitted as

 three alphanumeric characters) followed by some text. The number

 is intended for use by automata to determine what state to enter

 next; the text is intended for the human user. It is intended

 that the three digits contain enough encoded information that the

 user-process (the User-PI) will not need to examine the text and

 may either discard it or pass it on to the user, as appropriate.

 In particular, the text may be server-dependent, so there are

 likely to be varying texts for each reply code.

 A reply is defined to contain the 3-digit code, followed by Space

 October 1985

File Transfer Protocol

 <SP>, followed by one line of text (where some maximum line length

 has been specified), and terminated by the Telnet end-of-line

 code. There will be cases however, where the text is longer than

 a single line. In these cases the complete text must be bracketed

 so the User-process knows when it may stop reading the reply (i.e.

 stop processing input on the control connection) and go do other

 things. This requires a special format on the first line to

 indicate that more than one line is coming, and another on the

 last line to designate it as the last. At least one of these must

 contain the appropriate reply code to indicate the state of the

 transaction. To satisfy all factions, it was decided that both

 the first and last line codes should be the same.

 Thus the format for multi-line replies is that the first line

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 27 of 49http://www.faqs.org/rfcs/rfc959.html

 will begin with the exact required reply code, followed

 immediately by a Hyphen, "-" (also known as Minus), followed by

 text. The last line will begin with the same code, followed

 immediately by Space <SP>, optionally some text, and the Telnet

 end-of-line code.

 For example:

 123-First line

 Second line

 234 A line beginning with numbers

 123 The last line

 The user-process then simply needs to search for the second

 occurrence of the same reply code, followed by <SP> (Space), at

 the beginning of a line, and ignore all intermediary lines. If

 an intermediary line begins with a 3-digit number, the Server

 must pad the front to avoid confusion.

 This scheme allows standard system routines to be used for

 reply information (such as for the STAT reply), with

 "artificial" first and last lines tacked on. In rare cases

 where these routines are able to generate three digits and a

 Space at the beginning of any line, the beginning of each

 text line should be offset by some neutral text, like Space.

 This scheme assumes that multi-line replies may not be nested.

 The three digits of the reply each have a special significance.

 This is intended to allow a range of very simple to very

 sophisticated responses by the user-process. The first digit

 denotes whether the response is good, bad or incomplete.

 (Referring to the state diagram), an unsophisticated user-process

 will be able to determine its next action (proceed as planned,

 October 1985

File Transfer Protocol

 redo, retrench, etc.) by simply examining this first digit. A

 user-process that wants to know approximately what kind of error

 occurred (e.g. file system error, command syntax error) may

 examine the second digit, reserving the third digit for the finest

 gradation of information (e.g., RNTO command without a preceding

 RNFR).

 There are five values for the first digit of the reply code:

 1yz Positive Preliminary reply

 The requested action is being initiated; expect another

 reply before proceeding with a new command. (The

 user-process sending another command before the

 completion reply would be in violation of protocol; but

 server-FTP processes should queue any commands that

 arrive while a preceding command is in progress.) This

 type of reply can be used to indicate that the command

 was accepted and the user-process may now pay attention

 to the data connections, for implementations where

 simultaneous monitoring is difficult. The server-FTP

 process may send at most, one 1yz reply per command.

 2yz Positive Completion reply

 The requested action has been successfully completed. A

 new request may be initiated.

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 28 of 49http://www.faqs.org/rfcs/rfc959.html

 3yz Positive Intermediate reply

 The command has been accepted, but the requested action

 is being held in abeyance, pending receipt of further

 information. The user should send another command

 specifying this information. This reply is used in

 command sequence groups.

 4yz Transient Negative Completion reply

 The command was not accepted and the requested action did

 not take place, but the error condition is temporary and

 the action may be requested again. The user should

 return to the beginning of the command sequence, if any.

 It is difficult to assign a meaning to "transient",

 particularly when two distinct sites (Server- and

 User-processes) have to agree on the interpretation.

 Each reply in the 4yz category might have a slightly

 different time value, but the intent is that the

 October 1985

File Transfer Protocol

 user-process is encouraged to try again. A rule of thumb

 in determining if a reply fits into the 4yz or the 5yz

 (Permanent Negative) category is that replies are 4yz if

 the commands can be repeated without any change in

 command form or in properties of the User or Server

 (e.g., the command is spelled the same with the same

 arguments used; the user does not change his file access

 or user name; the server does not put up a new

 implementation.)

 5yz Permanent Negative Completion reply

 The command was not accepted and the requested action did

 not take place. The User-process is discouraged from

 repeating the exact request (in the same sequence). Even

 some "permanent" error conditions can be corrected, so

 the human user may want to direct his User-process to

 reinitiate the command sequence by direct action at some

 point in the future (e.g., after the spelling has been

 changed, or the user has altered his directory status.)

 The following function groupings are encoded in the second

 digit:

 x0z Syntax - These replies refer to syntax errors,

 syntactically correct commands that don't fit any

 functional category, unimplemented or superfluous

 commands.

 x1z Information - These are replies to requests for

 information, such as status or help.

 x2z Connections - Replies referring to the control and

 data connections.

 x3z Authentication and accounting - Replies for the login

 process and accounting procedures.

 x4z Unspecified as yet.

 x5z File system - These replies indicate the status of the

 Server file system vis-a-vis the requested transfer or

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 29 of 49http://www.faqs.org/rfcs/rfc959.html

 other file system action.

 The third digit gives a finer gradation of meaning in each of

 the function categories, specified by the second digit. The

 list of replies below will illustrate this. Note that the text

 October 1985

File Transfer Protocol

 associated with each reply is recommended, rather than

 mandatory, and may even change according to the command with

 which it is associated. The reply codes, on the other hand,

 must strictly follow the specifications in the last section;

 that is, Server implementations should not invent new codes for

 situations that are only slightly different from the ones

 described here, but rather should adapt codes already defined.

 A command such as TYPE or ALLO whose successful execution

 does not offer the user-process any new information will

 cause a 200 reply to be returned. If the command is not

 implemented by a particular Server-FTP process because it

 has no relevance to that computer system, for example ALLO

 at a TOPS20 site, a Positive Completion reply is still

 desired so that the simple User-process knows it can proceed

 with its course of action. A 202 reply is used in this case

 with, for example, the reply text: "No storage allocation

 necessary." If, on the other hand, the command requests a

 non-site-specific action and is unimplemented, the response

 is 502. A refinement of that is the 504 reply for a command

 that is implemented, but that requests an unimplemented

 parameter.

 4.2.1 Reply Codes by Function Groups

 200 Command okay.

 500 Syntax error, command unrecognized.

 This may include errors such as command line too long.

 501 Syntax error in parameters or arguments.

 202 Command not implemented, superfluous at this site.

 502 Command not implemented.

 503 Bad sequence of commands.

 504 Command not implemented for that parameter.

 October 1985

File Transfer Protocol

 110 Restart marker reply.

 In this case, the text is exact and not left to the

 particular implementation; it must read:

 MARK yyyy = mmmm

 Where yyyy is User-process data stream marker, and mmmm

 server's equivalent marker (note the spaces between markers

 and "=").

 211 System status, or system help reply.

 212 Directory status.

 213 File status.

 214 Help message.

 On how to use the server or the meaning of a particular

 non-standard command. This reply is useful only to the

 human user.

 215 NAME system type.

 Where NAME is an official system name from the list in the

 Assigned Numbers document.

 120 Service ready in nnn minutes.

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 30 of 49http://www.faqs.org/rfcs/rfc959.html

 220 Service ready for new user.

 221 Service closing control connection.

 Logged out if appropriate.

 421 Service not available, closing control connection.

 This may be a reply to any command if the service knows it

 must shut down.

 125 Data connection already open; transfer starting.

 225 Data connection open; no transfer in progress.

 425 Can't open data connection.

 226 Closing data connection.

 Requested file action successful (for example, file

 transfer or file abort).

 426 Connection closed; transfer aborted.

 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

 230 User logged in, proceed.

 530 Not logged in.

 331 User name okay, need password.

 332 Need account for login.

 532 Need account for storing files.

 October 1985

File Transfer Protocol

 150 File status okay; about to open data connection.

 250 Requested file action okay, completed.

 257 "PATHNAME" created.

 350 Requested file action pending further information.

 450 Requested file action not taken.

 File unavailable (e.g., file busy).

 550 Requested action not taken.

 File unavailable (e.g., file not found, no access).

 451 Requested action aborted. Local error in processing.

 551 Requested action aborted. Page type unknown.

 452 Requested action not taken.

 Insufficient storage space in system.

 552 Requested file action aborted.

 Exceeded storage allocation (for current directory or

 dataset).

 553 Requested action not taken.

 File name not allowed.

 4.2.2 Numeric Order List of Reply Codes

 110 Restart marker reply.

 In this case, the text is exact and not left to the

 particular implementation; it must read:

 MARK yyyy = mmmm

 Where yyyy is User-process data stream marker, and mmmm

 server's equivalent marker (note the spaces between markers

 and "=").

 120 Service ready in nnn minutes.

 125 Data connection already open; transfer starting.

 150 File status okay; about to open data connection.

 October 1985

File Transfer Protocol

 200 Command okay.

 202 Command not implemented, superfluous at this site.

 211 System status, or system help reply.

 212 Directory status.

 213 File status.

 214 Help message.

 On how to use the server or the meaning of a particular

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 31 of 49http://www.faqs.org/rfcs/rfc959.html

 non-standard command. This reply is useful only to the

 human user.

 215 NAME system type.

 Where NAME is an official system name from the list in the

 Assigned Numbers document.

 220 Service ready for new user.

 221 Service closing control connection.

 Logged out if appropriate.

 225 Data connection open; no transfer in progress.

 226 Closing data connection.

 Requested file action successful (for example, file

 transfer or file abort).

 227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

 230 User logged in, proceed.

 250 Requested file action okay, completed.

 257 "PATHNAME" created.

 331 User name okay, need password.

 332 Need account for login.

 350 Requested file action pending further information.

 421 Service not available, closing control connection.

 This may be a reply to any command if the service knows it

 must shut down.

 425 Can't open data connection.

 426 Connection closed; transfer aborted.

 450 Requested file action not taken.

 File unavailable (e.g., file busy).

 451 Requested action aborted: local error in processing.

 452 Requested action not taken.

 Insufficient storage space in system.

 October 1985

File Transfer Protocol

 500 Syntax error, command unrecognized.

 This may include errors such as command line too long.

 501 Syntax error in parameters or arguments.

 502 Command not implemented.

 503 Bad sequence of commands.

 504 Command not implemented for that parameter.

 530 Not logged in.

 532 Need account for storing files.

 550 Requested action not taken.

 File unavailable (e.g., file not found, no access).

 551 Requested action aborted: page type unknown.

 552 Requested file action aborted.

 Exceeded storage allocation (for current directory or

 dataset).

 553 Requested action not taken.

 File name not allowed.

5. DECLARATIVE SPECIFICATIONS

 5.1. MINIMUM IMPLEMENTATION

 In order to make FTP workable without needless error messages, the

 following minimum implementation is required for all servers:

 TYPE - ASCII Non-print

 MODE - Stream

 STRUCTURE - File, Record

 COMMANDS - USER, QUIT, PORT,

 TYPE, MODE, STRU,

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 32 of 49http://www.faqs.org/rfcs/rfc959.html

 for the default values

 RETR, STOR,

 NOOP.

 The default values for transfer parameters are:

 TYPE - ASCII Non-print

 MODE - Stream

 STRU - File

 All hosts must accept the above as the standard defaults.

 October 1985

File Transfer Protocol

 5.2. CONNECTIONS

 The server protocol interpreter shall "listen" on Port L. The

 user or user protocol interpreter shall initiate the full-duplex

 control connection. Server- and user- processes should follow the

 conventions of the Telnet protocol as specified in the

 ARPA-Internet Protocol Handbook [1]. Servers are under no

 obligation to provide for editing of command lines and may require

 that it be done in the user host. The control connection shall be

 closed by the server at the user's request after all transfers and

 replies are completed.

 The user-DTP must "listen" on the specified data port; this may be

 the default user port (U) or a port specified in the PORT command.

 The server shall initiate the data connection from his own default

 data port (L-1) using the specified user data port. The direction

 of the transfer and the port used will be determined by the FTP

 service command.

 Note that all FTP implementation must support data transfer using

 the default port, and that only the USER-PI may initiate the use

 of non-default ports.

 When data is to be transferred between two servers, A and B (refer

 to Figure 2), the user-PI, C, sets up control connections with

 both server-PI's. One of the servers, say A, is then sent a PASV

 command telling him to "listen" on his data port rather than

 initiate a connection when he receives a transfer service command.

 When the user-PI receives an acknowledgment to the PASV command,

 which includes the identity of the host and port being listened

 on, the user-PI then sends A's port, a, to B in a PORT command; a

 reply is returned. The user-PI may then send the corresponding

 service commands to A and B. Server B initiates the connection

 and the transfer proceeds. The command-reply sequence is listed

 below where the messages are vertically synchronous but

 horizontally asynchronous:

 October 1985

File Transfer Protocol

 User-PI - Server A User-PI - Server B

 ------------------ ------------------

 C->A : Connect C->B : Connect

 C->A : PASV

 A->C : 227 Entering Passive Mode. A1,A2,A3,A4,a1,a2

 C->B : PORT A1,A2,A3,A4,a1,a2

 B->C : 200 Okay

 C->A : STOR C->B : RETR

 B->A : Connect to HOST-A, PORT-a

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 33 of 49http://www.faqs.org/rfcs/rfc959.html

 Figure 3

 The data connection shall be closed by the server under the

 conditions described in the Section on Establishing Data

 Connections. If the data connection is to be closed following a

 data transfer where closing the connection is not required to

 indicate the end-of-file, the server must do so immediately.

 Waiting until after a new transfer command is not permitted

 because the user-process will have already tested the data

 connection to see if it needs to do a "listen"; (remember that the

 user must "listen" on a closed data port BEFORE sending the

 transfer request). To prevent a race condition here, the server

 sends a reply (226) after closing the data connection (or if the

 connection is left open, a "file transfer completed" reply (250)

 and the user-PI should wait for one of these replies before

 issuing a new transfer command).

 Any time either the user or server see that the connection is

 being closed by the other side, it should promptly read any

 remaining data queued on the connection and issue the close on its

 own side.

 5.3. COMMANDS

 The commands are Telnet character strings transmitted over the

 control connections as described in the Section on FTP Commands.

 The command functions and semantics are described in the Section

 on Access Control Commands, Transfer Parameter Commands, FTP

 Service Commands, and Miscellaneous Commands. The command syntax

 is specified here.

 The commands begin with a command code followed by an argument

 field. The command codes are four or fewer alphabetic characters.

 Upper and lower case alphabetic characters are to be treated

 identically. Thus, any of the following may represent the

 retrieve command:

 October 1985

File Transfer Protocol

 RETR Retr retr ReTr rETr

 This also applies to any symbols representing parameter values,

 such as A or a for ASCII TYPE. The command codes and the argument

 fields are separated by one or more spaces.

 The argument field consists of a variable length character string

 ending with the character sequence <CRLF> (Carriage Return, Line

 Feed) for NVT-ASCII representation; for other negotiated languages

 a different end of line character might be used. It should be

 noted that the server is to take no action until the end of line

 code is received.

 The syntax is specified below in NVT-ASCII. All characters in the

 argument field are ASCII characters including any ASCII

 represented decimal integers. Square brackets denote an optional

 argument field. If the option is not taken, the appropriate

 default is implied.

 October 1985

File Transfer Protocol

 5.3.1. FTP COMMANDS

 The following are the FTP commands:

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 34 of 49http://www.faqs.org/rfcs/rfc959.html

 USER <SP> <username> <CRLF>

 PASS <SP> <password> <CRLF>

 ACCT <SP> <account-information> <CRLF>

 CWD <SP> <pathname> <CRLF>

 CDUP <CRLF>

 SMNT <SP> <pathname> <CRLF>

 QUIT <CRLF>

 REIN <CRLF>

 PORT <SP> <host-port> <CRLF>

 PASV <CRLF>

 TYPE <SP> <type-code> <CRLF>

 STRU <SP> <structure-code> <CRLF>

 MODE <SP> <mode-code> <CRLF>

 RETR <SP> <pathname> <CRLF>

 STOR <SP> <pathname> <CRLF>

 STOU <CRLF>

 APPE <SP> <pathname> <CRLF>

 ALLO <SP> <decimal-integer>

 [<SP> R <SP> <decimal-integer>] <CRLF>

 REST <SP> <marker> <CRLF>

 RNFR <SP> <pathname> <CRLF>

 RNTO <SP> <pathname> <CRLF>

 ABOR <CRLF>

 DELE <SP> <pathname> <CRLF>

 RMD <SP> <pathname> <CRLF>

 MKD <SP> <pathname> <CRLF>

 PWD <CRLF>

 LIST [<SP> <pathname>] <CRLF>

 NLST [<SP> <pathname>] <CRLF>

 SITE <SP> <string> <CRLF>

 SYST <CRLF>

 STAT [<SP> <pathname>] <CRLF>

 HELP [<SP> <string>] <CRLF>

 NOOP <CRLF>

 October 1985

File Transfer Protocol

 5.3.2. FTP COMMAND ARGUMENTS

 The syntax of the above argument fields (using BNF notation

 where applicable) is:

 <username> ::= <string>

 <password> ::= <string>

 <account-information> ::= <string>

 <string> ::= <char> | <char><string>

 <char> ::= any of the 128 ASCII characters except <CR> and

 <LF>

 <marker> ::= <pr-string>

 <pr-string> ::= <pr-char> | <pr-char><pr-string>

 <pr-char> ::= printable characters, any

 ASCII code 33 through 126

 <byte-size> ::= <number>

 <host-port> ::= <host-number>,<port-number>

 <host-number> ::= <number>,<number>,<number>,<number>

 <port-number> ::= <number>,<number>

 <number> ::= any decimal integer 1 through 255

 <form-code> ::= N | T | C

 <type-code> ::= A [<sp> <form-code>]

 | E [<sp> <form-code>]

 | I

 | L <sp> <byte-size>

 <structure-code> ::= F | R | P

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 35 of 49http://www.faqs.org/rfcs/rfc959.html

 <mode-code> ::= S | B | C

 <pathname> ::= <string>

 <decimal-integer> ::= any decimal integer

 October 1985

File Transfer Protocol

 5.4. SEQUENCING OF COMMANDS AND REPLIES

 The communication between the user and server is intended to be an

 alternating dialogue. As such, the user issues an FTP command and

 the server responds with a prompt primary reply. The user should

 wait for this initial primary success or failure response before

 sending further commands.

 Certain commands require a second reply for which the user should

 also wait. These replies may, for example, report on the progress

 or completion of file transfer or the closing of the data

 connection. They are secondary replies to file transfer commands.

 One important group of informational replies is the connection

 greetings. Under normal circumstances, a server will send a 220

 reply, "awaiting input", when the connection is completed. The

 user should wait for this greeting message before sending any

 commands. If the server is unable to accept input right away, a

 120 "expected delay" reply should be sent immediately and a 220

 reply when ready. The user will then know not to hang up if there

 is a delay.

 Spontaneous Replies

 Sometimes "the system" spontaneously has a message to be sent

 to a user (usually all users). For example, "System going down

 in 15 minutes". There is no provision in FTP for such

 spontaneous information to be sent from the server to the user.

 It is recommended that such information be queued in the

 server-PI and delivered to the user-PI in the next reply

 (possibly making it a multi-line reply).

 The table below lists alternative success and failure replies for

 each command. These must be strictly adhered to; a server may

 substitute text in the replies, but the meaning and action implied

 by the code numbers and by the specific command reply sequence

 cannot be altered.

 Command-Reply Sequences

 In this section, the command-reply sequence is presented. Each

 command is listed with its possible replies; command groups are

 listed together. Preliminary replies are listed first (with

 their succeeding replies indented and under them), then

 positive and negative completion, and finally intermediary

 October 1985

File Transfer Protocol

 replies with the remaining commands from the sequence

 following. This listing forms the basis for the state

 diagrams, which will be presented separately.

 Connection Establishment

 120

 220

 220

 421

 Login

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 36 of 49http://www.faqs.org/rfcs/rfc959.html

 USER

 230

 530

 500, 501, 421

 331, 332

 PASS

 230

 202

 530

 500, 501, 503, 421

 332

 ACCT

 230

 202

 530

 500, 501, 503, 421

 CWD

 250

 500, 501, 502, 421, 530, 550

 CDUP

 200

 500, 501, 502, 421, 530, 550

 SMNT

 202, 250

 500, 501, 502, 421, 530, 550

 Logout

 REIN

 120

 220

 220

 421

 500, 502

 QUIT

 221

 500

 October 1985

File Transfer Protocol

 Transfer parameters

 PORT

 200

 500, 501, 421, 530

 PASV

 227

 500, 501, 502, 421, 530

 MODE

 200

 500, 501, 504, 421, 530

 TYPE

 200

 500, 501, 504, 421, 530

 STRU

 200

 500, 501, 504, 421, 530

 File action commands

 ALLO

 200

 202

 500, 501, 504, 421, 530

 REST

 500, 501, 502, 421, 530

 350

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 37 of 49http://www.faqs.org/rfcs/rfc959.html

 STOR

 125, 150

 (110)

 226, 250

 425, 426, 451, 551, 552

 532, 450, 452, 553

 500, 501, 421, 530

 STOU

 125, 150

 (110)

 226, 250

 425, 426, 451, 551, 552

 532, 450, 452, 553

 500, 501, 421, 530

 RETR

 125, 150

 (110)

 226, 250

 425, 426, 451

 450, 550

 500, 501, 421, 530

 October 1985

File Transfer Protocol

 LIST

 125, 150

 226, 250

 425, 426, 451

 450

 500, 501, 502, 421, 530

 NLST

 125, 150

 226, 250

 425, 426, 451

 450

 500, 501, 502, 421, 530

 APPE

 125, 150

 (110)

 226, 250

 425, 426, 451, 551, 552

 532, 450, 550, 452, 553

 500, 501, 502, 421, 530

 RNFR

 450, 550

 500, 501, 502, 421, 530

 350

 RNTO

 250

 532, 553

 500, 501, 502, 503, 421, 530

 DELE

 250

 450, 550

 500, 501, 502, 421, 530

 RMD

 250

 500, 501, 502, 421, 530, 550

 MKD

 257

 500, 501, 502, 421, 530, 550

 PWD

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 38 of 49http://www.faqs.org/rfcs/rfc959.html

 257

 500, 501, 502, 421, 550

 ABOR

 225, 226

 500, 501, 502, 421

 October 1985

File Transfer Protocol

 Informational commands

 SYST

 215

 500, 501, 502, 421

 STAT

 211, 212, 213

 450

 500, 501, 502, 421, 530

 HELP

 211, 214

 500, 501, 502, 421

 Miscellaneous commands

 SITE

 200

 202

 500, 501, 530

 NOOP

 200

 500 421

 October 1985

File Transfer Protocol

6. STATE DIAGRAMS

 Here we present state diagrams for a very simple minded FTP

 implementation. Only the first digit of the reply codes is used.

 There is one state diagram for each group of FTP commands or command

 sequences.

 The command groupings were determined by constructing a model for

 each command then collecting together the commands with structurally

 identical models.

 For each command or command sequence there are three possible

 outcomes: success (S), failure (F), and error (E). In the state

 diagrams below we use the symbol B for "begin", and the symbol W for

 "wait for reply".

 We first present the diagram that represents the largest group of FTP

 commands:

 1,3 +---+

 ----------->| E |

 | +---+

 |

 +---+ cmd +---+ 2 +---+

 | B |---------->| W |---------->| S |

 +---+ +---+ +---+

 |

 | 4,5 +---+

 ----------->| F |

 +---+

 This diagram models the commands:

 ABOR, ALLO, DELE, CWD, CDUP, SMNT, HELP, MODE, NOOP, PASV,

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 39 of 49http://www.faqs.org/rfcs/rfc959.html

 QUIT, SITE, PORT, SYST, STAT, RMD, MKD, PWD, STRU, and TYPE.

 October 1985

File Transfer Protocol

 The other large group of commands is represented by a very similar

 diagram:

 3 +---+

 ----------->| E |

 | +---+

 |

 +---+ cmd +---+ 2 +---+

 | B |---------->| W |---------->| S |

 +---+ --->+---+ +---+

 | | |

 | | | 4,5 +---+

 | 1 | ----------->| F |

 ----- +---+

 This diagram models the commands:

 APPE, LIST, NLST, REIN, RETR, STOR, and STOU.

 Note that this second model could also be used to represent the first

 group of commands, the only difference being that in the first group

 the 100 series replies are unexpected and therefore treated as error,

 while the second group expects (some may require) 100 series replies.

 Remember that at most, one 100 series reply is allowed per command.

 The remaining diagrams model command sequences, perhaps the simplest

 of these is the rename sequence:

 +---+ RNFR +---+ 1,2 +---+

 | B |---------->| W |---------->| E |

 +---+ +---+ -->+---+

 | | |

 3 | | 4,5 |

 -------------- ------ |

 | | | +---+

 | ------------->| S |

 | | 1,3 | | +---+

 | 2| --------

 | | | |

 V | | |

 +---+ RNTO +---+ 4,5 ----->+---+

 | |---------->| W |---------->| F |

 +---+ +---+ +---+

 October 1985

File Transfer Protocol

 The next diagram is a simple model of the Restart command:

 +---+ REST +---+ 1,2 +---+

 | B |---------->| W |---------->| E |

 +---+ +---+ -->+---+

 | | |

 3 | | 4,5 |

 -------------- ------ |

 | | | +---+

 | ------------->| S |

 | | 3 | | +---+

 | 2| --------

 | | | |

 V | | |

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 40 of 49http://www.faqs.org/rfcs/rfc959.html

 +---+ cmd +---+ 4,5 ----->+---+

 | |---------->| W |---------->| F |

 +---+ -->+---+ +---+

 | |

 | 1 |

 Where "cmd" is APPE, STOR, or RETR.

 We note that the above three models are similar. The Restart differs

 from the Rename two only in the treatment of 100 series replies at

 the second stage, while the second group expects (some may require)

 100 series replies. Remember that at most, one 100 series reply is

 allowed per command.

 October 1985

File Transfer Protocol

 The most complicated diagram is for the Login sequence:

 1

 +---+ USER +---+------------->+---+

 | B |---------->| W | 2 ---->| E |

 +---+ +---+------ | -->+---+

 | | | | |

 3 | | 4,5 | | |

 -------------- ----- | | |

 | | | | |

 | | | | |

 | --------- |

 | 1| | | |

 V | | | |

 +---+ PASS +---+ 2 | ------>+---+

 | |---------->| W |------------->| S |

 +---+ +---+ ---------->+---+

 | | | | |

 3 | |4,5| | |

 -------------- -------- |

 | | | | |

 | | | | |

 | -----------

 | 1,3| | | |

 V | 2| | |

 +---+ ACCT +---+-- | ----->+---+

 | |---------->| W | 4,5 -------->| F |

 +---+ +---+------------->+---+

 October 1985

File Transfer Protocol

 Finally, we present a generalized diagram that could be used to model

 the command and reply interchange:

 | |

 Begin | |

 | V |

 | +---+ cmd +---+ 2 +---+ |

 -->| |------->| |---------->| | |

 | | | W | | S |-----|

 -->| | -->| |----- | | |

 | +---+ | +---+ 4,5 | +---+ |

 | | | | | | |

 | | | 1| |3 | +---+ |

 | | | | | | | | |

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 41 of 49http://www.faqs.org/rfcs/rfc959.html

 | | ---- | ---->| F |-----

 | | | | |

 | | | +---+

 |

 |

 V

 End

 October 1985

File Transfer Protocol

7. TYPICAL FTP SCENARIO

 User at host U wanting to transfer files to/from host S:

 In general, the user will communicate to the server via a mediating

 user-FTP process. The following may be a typical scenario. The

 user-FTP prompts are shown in parentheses, '---->' represents

 commands from host U to host S, and '<----' represents replies from

 host S to host U.

 LOCAL COMMANDS BY USER ACTION INVOLVED

 ftp (host) multics<CR> Connect to host S, port L,

 establishing control connections.

 <---- 220 Service ready <CRLF>.

 username Doe <CR> USER Doe<CRLF>---->

 <---- 331 User name ok,

 need password<CRLF>.

 password mumble <CR> PASS mumble<CRLF>---->

 <---- 230 User logged in<CRLF>.

 retrieve (local type) ASCII<CR>

 (local pathname) test 1 <CR> User-FTP opens local file in ASCII.

 (for. pathname) test.pl1<CR> RETR test.pl1<CRLF> ---->

 <---- 150 File status okay;

 about to open data

 connection<CRLF>.

 Server makes data connection

 to port U.

 <---- 226 Closing data connection,

 file transfer successful<CRLF>.

 type Image<CR> TYPE I<CRLF> ---->

 <---- 200 Command OK<CRLF>

 store (local type) image<CR>

 (local pathname) file dump<CR> User-FTP opens local file in Image.

 (for.pathname) >udd>cn>fd<CR> STOR >udd>cn>fd<CRLF> ---->

 <---- 550 Access denied<CRLF>

 terminate QUIT <CRLF> ---->

 Server closes all

 connections.

8. CONNECTION ESTABLISHMENT

 The FTP control connection is established via TCP between the user

 process port U and the server process port L. This protocol is

 assigned the service port 21 (25 octal), that is L=21.

 October 1985

File Transfer Protocol

APPENDIX I - PAGE STRUCTURE

 The need for FTP to support page structure derives principally from

 the need to support efficient transmission of files between TOPS-20

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 42 of 49http://www.faqs.org/rfcs/rfc959.html

 systems, particularly the files used by NLS.

 The file system of TOPS-20 is based on the concept of pages. The

 operating system is most efficient at manipulating files as pages.

 The operating system provides an interface to the file system so that

 many applications view files as sequential streams of characters.

 However, a few applications use the underlying page structures

 directly, and some of these create holey files.

 A TOPS-20 disk file consists of four things: a pathname, a page

 table, a (possibly empty) set of pages, and a set of attributes.

 The pathname is specified in the RETR or STOR command. It includes

 the directory name, file name, file name extension, and generation

 number.

 The page table contains up to 2**18 entries. Each entry may be

 EMPTY, or may point to a page. If it is not empty, there are also

 some page-specific access bits; not all pages of a file need have the

 same access protection.

 A page is a contiguous set of 512 words of 36 bits each.

 The attributes of the file, in the File Descriptor Block (FDB),

 contain such things as creation time, write time, read time, writer's

 byte-size, end-of-file pointer, count of reads and writes, backup

 system tape numbers, etc.

 Note that there is NO requirement that entries in the page table be

 contiguous. There may be empty page table slots between occupied

 ones. Also, the end of file pointer is simply a number. There is no

 requirement that it in fact point at the "last" datum in the file.

 Ordinary sequential I/O calls in TOPS-20 will cause the end of file

 pointer to be left after the last datum written, but other operations

 may cause it not to be so, if a particular programming system so

 requires.

 In fact, in both of these special cases, "holey" files and

 end-of-file pointers NOT at the end of the file, occur with NLS data

 files.

 October 1985

File Transfer Protocol

 The TOPS-20 paged files can be sent with the FTP transfer parameters:

 TYPE L 36, STRU P, and MODE S (in fact, any mode could be used).

 Each page of information has a header. Each header field, which is a

 logical byte, is a TOPS-20 word, since the TYPE is L 36.

 The header fields are:

 Word 0: Header Length.

 The header length is 5.

 Word 1: Page Index.

 If the data is a disk file page, this is the number of that

 page in the file's page map. Empty pages (holes) in the file

 are simply not sent. Note that a hole is NOT the same as a

 page of zeros.

 Word 2: Data Length.

 The number of data words in this page, following the header.

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 43 of 49http://www.faqs.org/rfcs/rfc959.html

 Thus, the total length of the transmission unit is the Header

 Length plus the Data Length.

 Word 3: Page Type.

 A code for what type of chunk this is. A data page is type 3,

 the FDB page is type 2.

 Word 4: Page Access Control.

 The access bits associated with the page in the file's page

 map. (This full word quantity is put into AC2 of an SPACS by

 the program reading from net to disk.)

 After the header are Data Length data words. Data Length is

 currently either 512 for a data page or 31 for an FDB. Trailing

 zeros in a disk file page may be discarded, making Data Length less

 than 512 in that case.

 October 1985

File Transfer Protocol

APPENDIX II - DIRECTORY COMMANDS

 Since UNIX has a tree-like directory structure in which directories

 are as easy to manipulate as ordinary files, it is useful to expand

 the FTP servers on these machines to include commands which deal with

 the creation of directories. Since there are other hosts on the

 ARPA-Internet which have tree-like directories (including TOPS-20 and

 Multics), these commands are as general as possible.

 Four directory commands have been added to FTP:

 MKD pathname

 Make a directory with the name "pathname".

 RMD pathname

 Remove the directory with the name "pathname".

 PWD

 Print the current working directory name.

 CDUP

 Change to the parent of the current working directory.

 The "pathname" argument should be created (removed) as a

 subdirectory of the current working directory, unless the "pathname"

 string contains sufficient information to specify otherwise to the

 server, e.g., "pathname" is an absolute pathname (in UNIX and

 Multics), or pathname is something like "<abso.lute.path>" to

 TOPS-20.

 REPLY CODES

 The CDUP command is a special case of CWD, and is included to

 simplify the implementation of programs for transferring directory

 trees between operating systems having different syntaxes for

 naming the parent directory. The reply codes for CDUP be

 identical to the reply codes of CWD.

 The reply codes for RMD be identical to the reply codes for its

 file analogue, DELE.

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 44 of 49http://www.faqs.org/rfcs/rfc959.html

 The reply codes for MKD, however, are a bit more complicated. A

 freshly created directory will probably be the object of a future

 October 1985

File Transfer Protocol

 CWD command. Unfortunately, the argument to MKD may not always be

 a suitable argument for CWD. This is the case, for example, when

 a TOPS-20 subdirectory is created by giving just the subdirectory

 name. That is, with a TOPS-20 server FTP, the command sequence

 MKD MYDIR

 CWD MYDIR

 will fail. The new directory may only be referred to by its

 "absolute" name; e.g., if the MKD command above were issued while

 connected to the directory <DFRANKLIN>, the new subdirectory

 could only be referred to by the name <DFRANKLIN.MYDIR>.

 Even on UNIX and Multics, however, the argument given to MKD may

 not be suitable. If it is a "relative" pathname (i.e., a pathname

 which is interpreted relative to the current directory), the user

 would need to be in the same current directory in order to reach

 the subdirectory. Depending on the application, this may be

 inconvenient. It is not very robust in any case.

 To solve these problems, upon successful completion of an MKD

 command, the server should return a line of the form:

 257<space>"<directory-name>"<space><commentary>

 That is, the server will tell the user what string to use when

 referring to the created directory. The directory name can

 contain any character; embedded double-quotes should be escaped by

 double-quotes (the "quote-doubling" convention).

 For example, a user connects to the directory /usr/dm, and creates

 a subdirectory, named pathname:

 CWD /usr/dm

 200 directory changed to /usr/dm

 MKD pathname

 257 "/usr/dm/pathname" directory created

 An example with an embedded double quote:

 MKD foo"bar

 257 "/usr/dm/foo""bar" directory created

 CWD /usr/dm/foo"bar

 200 directory changed to /usr/dm/foo"bar

 October 1985

File Transfer Protocol

 The prior existence of a subdirectory with the same name is an

 error, and the server must return an "access denied" error reply

 in that case.

 CWD /usr/dm

 200 directory changed to /usr/dm

 MKD pathname

 521-"/usr/dm/pathname" directory already exists;

 521 taking no action.

 The failure replies for MKD are analogous to its file creating

 cousin, STOR. Also, an "access denied" return is given if a file

RFC 959

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 45 of 49http://www.faqs.org/rfcs/rfc959.html

 name with the same name as the subdirectory will conflict with the

 creation of the subdirectory (this is a problem on UNIX, but

 shouldn't be one on TOPS-20).

 Essentially because the PWD command returns the same type of

 information as the successful MKD command, the successful PWD

 command uses the 257 reply code as well.

 SUBTLETIES

 Because these commands will be most useful in transferring

 subtrees from one machine to another, carefully observe that the

 argument to MKD is to be interpreted as a sub-directory of the

 current working directory, unless it contains enough information

 for the destination host to tell otherwise. A hypothetical

 example of its use in the TOPS-20 world:

 CWD <some.where>

 200 Working directory changed

 MKD overrainbow

 257 "<some.where.overrainbow>" directory created

 CWD overrainbow

 431 No such directory

 CWD <some.where.overrainbow>

 200 Working directory changed

 CWD <some.where>

 200 Working directory changed to <some.where>

 MKD <unambiguous>

 257 "<unambiguous>" directory created

 CWD <unambiguous>

 Note that the first example results in a subdirectory of the

 connected directory. In contrast, the argument in the second

 example contains enough information for TOPS-20 to tell that the

 October 1985

File Transfer Protocol

 <unambiguous> directory is a top-level directory. Note also that

 in the first example the user "violated" the protocol by

 attempting to access the freshly created directory with a name

 other than the one returned by TOPS-20. Problems could have

 resulted in this case had there been an <overrainbow> directory;

 this is an ambiguity inherent in some TOPS-20 implementations.

 Similar considerations apply to the RMD command. The point is

 this: except where to do so would violate a host's conventions for

 denoting relative versus absolute pathnames, the host should treat

 the operands of the MKD and RMD commands as subdirectories. The

 257 reply to the MKD command must always contain the absolute

 pathname of the created directory.

 October 1985

File Transfer Protocol

APPENDIX III - RFCs on FTP

 Bhushan, Abhay, "A File Transfer Protocol", (NIC 5823),

 MIT-Project MAC, 16 April 1971.

 Harslem, Eric, and John Heafner, "Comments on (A File

 Transfer Protocol)", (NIC 6726), RAND, 29 April 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol",

 (NIC 6794), MIT-Project MAC, 23 June 1971.

RFC 959

RFC 959

RFC 114

RFC 114

RFC 141

RFC 172

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 46 of 49http://www.faqs.org/rfcs/rfc959.html

 Braden, Bob, "Comments on DTP and FTP Proposals", (NIC 7663),

 UCLA/CCN, 29 September 1971.

 Bhushan, Abhay, et al, "The File Transfer Protocol",

 (NIC 7813), MIT-Project MAC, 17 November 1971.

 McKenzie, Alex, "A Suggested Addition to File Transfer Protocol",

 (NIC 8163), BBN, 8 December 1971.

 Bhushan, Abhay, "The Use of "Set Data Type" Transaction in File

 Transfer Protocol", (NIC 8304), MIT-Project MAC,

 25 January 1972.

 Bhushan, Abhay, "The File Transfer Protocol", (NIC 10596),

 MIT-Project MAC, 8 July 1972.

 Bhushan, Abhay, "Comments on the File Transfer Protocol ()",

 (NIC 11357), MIT-Project MAC, 18 August 1972.

 Hicks, Greg, "User FTP Documentation", (NIC 12404), Utah,

 27 November 1972.

 Bhushan, Abhay, "File Transfer Protocol (FTP) Status and Further

 Comments", (NIC 12406), MIT-Project MAC, 20 November 1972.

 Braden, Bob, "Comments on File Transfer Protocol",

 (NIC 13299), UCLA/CCN, 7 February 1973.

 Thomas, Bob, and Bob Clements, "FTP Server-Server Interaction",

 (NIC 13770), BBN, 15 January 1973.

 Braden, Bob, "Print Files in FTP", (NIC 13299), UCLA/CCN,

 27 February 1973.

 McKenzie, Alex, "File Transfer Protocol", (NIC 14333), BBN,

 16 February 1973.

 October 1985

File Transfer Protocol

 Bressler, Bob, and Bob Thomas, "Mail Retrieval via FTP",

 (NIC 14378), BBN-NET and BBN-TENEX, 20 February 1973.

 Neigus, Nancy, "File Transfer Protocol", (NIC 17759), BBN,

 12 July 1973.

 Krilanovich, Mark, and George Gregg, "Comments on the File Transfer

 Protocol", (NIC 21255), UCSB, 7 January 1974.

 Pogran, Ken, and Nancy Neigus, "Response to - Comments on the

 File Transfer Protocol", (NIC 21530), BBN, 28 January 1974.

 Krilanovich, Mark, George Gregg, Wayne Hathaway, and Jim White,

 "Comments on the File Transfer Protocol", (NIC 22054), UCSB,

 Ames Research Center, SRI-ARC, 28 February 1974.

 Bhushan, Abhay, "FTP Comments and Response to ",

 (NIC 14573), MIT-DMCG, 21 February 1973.

 Braden, Bob, "FTP Data Compression", (NIC 14742), UCLA/CCN,

 8 March 1973.

 Bhushan, Abhay, "FTP and Network Mail System", RFC 475 (NIC 14919),

 MIT-DMCG, 6 March 1973.

 Bressler, Bob, and Bob Thomas "FTP Server-Server Interaction - II",

RFC 238

RFC 265

RFC 281

RFC 294

RFC 354

RFC 354

RFC 385

RFC 412

RFC 414

RFC 430

RFC 438

RFC 448

RFC 454

RFC 959

RFC 458

RFC 542

RFC 607

RFC 607

RFC 614

RFC 624

RFC 430 RFC 463

RFC 468

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 47 of 49http://www.faqs.org/rfcs/rfc959.html

 (NIC 14947), BBN-NET and BBN-TENEX, 26 March 1973.

 White, Jim, "Use of FTP by the NIC Journal", (NIC 14948),

 SRI-ARC, 8 March 1973.

 White, Jim, "Host-Dependent FTP Parameters", (NIC 14949),

 SRI-ARC, 8 March 1973.

 Padlipsky, Mike, "An FTP Command-Naming Problem",

 (NIC 16157), MIT-Multics, 26 June 1973.

 Day, John, "Memo to FTP Group (Proposal for File Access Protocol)",

 (NIC 16819), Illinois, 25 June 1973.

 Merryman, Robert, "The UCSD-CC Server-FTP Facility",

 (NIC 17451), UCSD-CC, 22 June 1973.

 Braden, Bob, "TENEX FTP Problem", RFC 571 (NIC 18974), UCLA/CCN,

 15 November 1973.

 October 1985

File Transfer Protocol

 McKenzie, Alex, and Jon Postel, "Telnet and FTP Implementation -

 Schedule Change", (NIC 20615), BBN and MITRE,

 29 November 1973.

 Sussman, Julie, "FTP Error Code Usage for More Reliable Mail

 Service", (NIC 30237), BBN, 10 April 1974.

 Postel, Jon, "Revised FTP Reply Codes", (NIC 30843),

 UCLA/NMC, 5 June 1974.

 Harvey, Brian, "Leaving Well Enough Alone", (NIC 32481),

 SU-AI, 10 May 1975.

 Harvey, Brian, "One More Try on the FTP", (NIC 32700), SU-AI,

 28 May 1975.

 Lieb, J., "CWD Command of FTP", (NIC 32963), 14 July 1975.

 Harrenstien, Ken, "FTP Extension: XSEN", (NIC 42217), SRI-KL,

 31 October 1977.

 Harrenstien, Ken, "FTP Extension: XRSQ/XRCP", (NIC 42758),

 SRI-KL, 30 December 1977.

 Lebling, P. David, "Survey of FTP Mail and MLFL", , MIT,

 10 December 1978.

 Postel, Jon, "File Transfer Protocol Specification", , ISI,

 June 1980.

 Mankins, David, Dan Franklin, and Buzz Owen, "Directory Oriented FTP

 Commands", , BBN, December 1980.

 Padlipsky, Michael, "FTP Unique-Named Store Command", , MITRE,

 July 1985.

 October 1985

File Transfer Protocol

REFERENCES

 [1] Feinler, Elizabeth, "Internet Protocol Transition Workbook",

 Network Information Center, SRI International, March 1982.

RFC 478

RFC 479

RFC 480

RFC 506

RFC 520

RFC 532

RFC 959

RFC 593

RFC 630

RFC 640

RFC 686

RFC 691

RFC 697

RFC 737

RFC 743

RFC 751

RFC 765

RFC 776

RFC 949

RFC 959

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 48 of 49http://www.faqs.org/rfcs/rfc959.html

 [2] Postel, Jon, "Transmission Control Protocol - DARPA Internet

 Program Protocol Specification", , DARPA, September 1981.

 [3] Postel, Jon, and Joyce Reynolds, "Telnet Protocol

 Specification", , ISI, May 1983.

 [4] Reynolds, Joyce, and Jon Postel, "Assigned Numbers", ,

 ISI, April 1985.

RFC 793

RFC 854

RFC 943

Comment on RFC 959

Comments about this RFC:

 by
Himanshu Agrawal (12/7/2003)
RFC 959: Its very nice to see. Please send me ftp client-server related documentatioin...

 by
chandru (1/12/2004)
RFC 959: it is very nice please send me the codings in java to create an ftp application...

Previous: RFC 0958 - Network Time Protocol
(NTP)

 Next: RFC 0960 - Assigned numbers

[| | | | |]RFC Index RFC Search Usenet FAQs Web FAQs Documents Cities

8/3/06 9:32 PMRFC 959 (rfc959) - File Transfer Protocol

Page 49 of 49http://www.faqs.org/rfcs/rfc959.html

