*======Transient Timing SquareWave 100msec=======

The timing for transient analysis is not consistent. More time points are taken when something is moving. A square wave which has its tmax set low will demonstrate this fact.

```
*V PULSE NODE P NODE N DC
                              VALUE
                                     PULSE ( VINIT VPULSE TDELAY TRISE
                                                                         TFALL
                                                                                PWIDTH PERIOD )
                                     PULSE ( -1
                0
                              0
                                                                  10m
                                                                                300m
V PUL
         V1
                       DC
                                                           1m
                                                                         3m
*TRAN
         TSTEP
               TSTOP
                      TSTART TMAX
                                     ?UIC?
                       0
.tran
         100m
               1
                              100m
```

The pointplot statement can show the actual time points.

```
plot
                  pointplot
          v1
plot
      ---- v1
tage
                          0.3
                                  0.4
                                         0.5
                                                0.6
                                                       0.7
                                                                     0.9
                                     time
٧
       o : v1
     0.0
            0.1
                   0.2
                          0.3
                                 0.4
                                        0.5
                                                0.6
                                                       0.7
                                                              0.8
                                                                     0.9
                                                                            1.0
                                     time s
```

The following shows some critical details in red which are required to do some math processing of the waveform vectors.

```
let
      num = length(time)-2
compose dtime start = 0 stop = $&num step =1
compose rtime start = 0 stop = $&num step =1
        i = 0
       $&num
repeat
        i = i + 1
let
        dtime[i] = time[i +1] -time[i]
let
let
        rtime[i] = time[i]
end
        dtime2 = abs(dtime)+100u
let
       dtime2 vs rtime ylog
plot
```

The intention is the show the order of magnitudes for the timing.

This timing profile can effect things like doing a RMS of a waveform.

The output will be as follows.

```
INPUT RMS Square prelinear = 0.930845
```

A linearize statement will make the timing and RMS value more consistent.

```
linearize
plot v1 pointplot
let vrms1_cdhw = sqrt(mean(v1*v1))
echo "INPUT RMS Square postlinear = $&vrms1_cdhw"
```


INPUT RMS Square postlinear = 1

```
=======Full_Netlist_For_Copy_Paste=================
RMS Sqr !00ms
.Option srcsteps = 1 set Gmin = 1.0000E-02
*=======Circuit_Netlist===
V_PUL
                    DC
                            0
                                 PULSE( -1 1 1m 10m 3m 300m 600m )
*TRAN
        TSTEP TSTOP TSTART TMAX ?UIC?
        100m 1
.tran
                    0
.control
run
set
        pensize = 2
plot
        v1
plot
        v1
              pointplot
        vrms1_cdhw = sqrt(mean(v1*v1))
let
echo
       "INPUT RMS Square prelinear = $&vrms1_cdhw"
let
        num = length(time)-2
compose dtime start = 0 stop = $&num step =1 compose rtime start = 0 stop = $&num step =1
let
        i = 0
        $&num
repeat
        i = i + 1
let
        dtime[i] = time[i +1] -time[i]
rtime[i] = time[i]
let
let
end
let
        dtime2 = abs(dtime)+100u
        dtime2 vs rtime ylog
plot
linearize
plot
        v1
              pointplot
let
        vrms1_cdhw = sqrt(mean(v1*v1))
echo
       "INPUT RMS Square postlinear = $&vrms1_cdhw"
        num = length(time)-2
let
compose dtime start = 0 stop = $&num step =1
compose rtime start = 0 stop = $&num step =1
let
        i = 0
repeat
        $&num
        i = i + 1
let
```

```
let    dtime[i] = time[i +1] -time[i]
let    rtime[i] = time[i]
end

plot    dtime vs rtime

.endc
.endc
7.12.10_10.31AM
dsauersanjose@aol.com
Don Sauer
http://www.idea2ic.com/
```